
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 1. Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particular tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infallible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering a practical judgment on relative merit. We
do, therefore, offer you our practical judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our advice is.

We presume that you are able to read computer programs in FORTRAN, that
being the language of this version of Numerical Recipes (Second Edition). The
book Numerical Recipes in C (Second Edition) is separately available, if you prefer
to program in that language. Earlier editions of Numerical Recipes in Pascal and
Numerical Recipes Routines and Examples in BASIC are also available; while not
containing the additional material of the Second Edition versions in C and FORTRAN,
these versions are perfectly serviceable if Pascal or BASIC is your language of
choice.

When we include programs in the text, they look like this:

SUBROUTINE flmoon(n,nph,jd,frac)
INTEGER jd,n,nph
REAL frac,RAD
PARAMETER (RAD=3.14159265/180.)

Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

INTEGER i
REAL am,as,c,t,t2,xtra
c=n+nph/4. This is how we comment an individual line.
t=c/1236.85
t2=t**2

1

2 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as=359.2242+29.105356*c You aren’t really intended to understand this al-
gorithm, but it does work!am=306.0253+385.816918*c+0.010730*t2

jd=2415020+28*n+7*nph
xtra=0.75933+1.53058868*c+(1.178e-4-1.55e-7*t)*t2
if(nph.eq.0.or.nph.eq.2)then

xtra=xtra+(0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin(RAD*am)
else if(nph.eq.1.or.nph.eq.3)then

xtra=xtra+(0.1721-4.e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am)
else

pause ’nph is unknown in flmoon’ This is how we will indicate error conditions.
endif
if(xtra.ge.0.)then

i=int(xtra)
else

i=int(xtra-1.)
endif
jd=jd+i
frac=xtra-i
return
END

A few remarks about our typographical conventions and programming style
are in order at this point:

• It is good programming practice to declare all variables and identifiers in
explicit “type” statements (REAL, INTEGER, etc.), even though the implicit
declaration rules of FORTRAN do not require this. We will always do
so. (As an aside to non-FORTRAN programmers, the implicit declaration
rules are that variables which begin with the letters i,j,k,l,m,n are
implicitly declared to be type INTEGER, while all other variables are
implicitly declared to be type REAL. Explicit declarations override these
conventions.)

• In sympathy with modular and object-oriented programming practice,
we separate, typographically, a routine’s “public” or “interface” section
from its “private” or “implementation” section. We do this even though
FORTRAN is by no means a modular or object-oriented language: the
separation makes sense simply as good programming style.

• The public section contains the calling interface and declarations of its
variables. We find it useful to consider PARAMETER statements, and their
associated declarations, as also being in the public section, since a user
may want to modify parameter values to suit a particular purpose. COMMON
blocks are likewise usually part of the public section, since they involve
communication between routines.

• As the last entry in the public section, we will, where applicable, put a
standardized comment line with the word USES (not a FORTRAN keyword),
followed by a list of all external subroutines and functions that the routine
references, excluding built-in FORTRAN functions. (For examples, see the
routines in §6.1.)

• An introductory comment, set in type as an indented paragraph, separates
the public section from the private or implementation section.

• Within the introductory comments, as well as in the text, we will frequently
use the notation a(1:m) to mean “the array elements a(1), a(2), . . . ,
a(m).” Likewise, notations like b(2:7) or c(1:m,1:n) are to be

1.0 Introduction 3

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

interpreted as ranges of array indices. (This use of colon to denote ranges
comes from FORTRAN-77’s syntax for array declarators and character
substrings.)

• The implementation section contains the declarations of variables that are
used only internally in the routine, any necessary SAVE statements for static
variables (variables that must be preserved between calls to the routine),
and of course the routine’s actual executable code.

• Case is not significant in FORTRAN, so it can be used to promote readability.
Our convention is to use upper case for two different, nonconflicting,
purposes. First, nonexecutable compiler keywords are in upper case (e.g.,
SUBROUTINE, REAL, COMMON); second, parameter identifiers are in upper
case. The reason for capitalizing parameters is that, because their values
are liable to be modified, the user often needs to scan the implementation
section of code to see exactly how the parameters are used.

• For simplicity, we adopt the convention of handling all errors and excep-
tional cases by the pause statement. In general, we do not intend that you
continue program execution after a pause occurs, but FORTRAN allows you
to do so — if you want to see what kind of wrong answer or catastrophic
error results. In many applications, you will want to modify our programs
to do more sophisticated error handling, for example to return with an
error flag set, or call an error-handling routine.

• In the printed form of this book, we take some special typographical
liberties regarding statement labels, and do . . . continue constructions.
These are described in §1.1. Note that no such liberties are taken in the
machine-readable Numerical Recipes diskettes, where all routines are in
standard ANSI FORTRAN-77.

Computational Environment and Program Validation

Our goal is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across different FORTRAN compilers. As surrogates for the large number of possible
combinations, we have tested all the programs in this book on the combinations
of machines, operating systems, and compilers shown on the accompanying table.
More generally, the programs should run without modification on any compiler that
implements the ANSI FORTRAN-77 standard. At the time of writing, there are not
enough installed implementations of the successor FORTRAN-90 standard to justify
our using any of its more advanced features. Since FORTRAN-90 is backwards-
compatible with FORTRAN-77, there should be no difficulty in using the programs in
this book on FORTRAN-90 compilers, as they become available.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance
of propagating typographical errors. “Driver” or demonstration programs that we
used as part of our validations are available separately as the Numerical Recipes
Example Book (FORTRAN), as well as in machine-readable form. If you plan to
use more than a few of the programs in this book, or if you plan to use programs
in this book on more than one different computer, then you may find it useful to
obtain a copy of these demonstration programs.

4 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Tested Machines and Compilers

Hardware O/S Version Compiler Version

IBM PC compatible 486/33 MS-DOS 5.0 Microsoft Fortran 5.1

IBM RS6000 AIX 3.0 IBM AIX XL FORTRAN Compiler/6000

IBM PC-RT BSD UNIX 4.3 “UNIX Fortran 77”

DEC VAX 4000 VMS 5.4 VAX Fortran 5.4

DEC VAXstation 2000 BSD UNIX 4.3 Berkeley f77 2.0 (4.3 bsd, SCCS lev. 6)

DECstation 5000/200 ULTRIX 4.2 DEC Fortran for ULTRIX RISC 3.1

DECsystem 5400 ULTRIX 4.1 MIPS f77 2.10

Sun SPARCstation 2 SunOS 4.1 Sun Fortran 1.4 (SC 1.0)

Apple Macintosh System 6.0.7 / MPW 3.2 Absoft Fortran 77 Compiler 3.1.2

Of course we would be foolish to claim that there are no bugs in our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to the Numerical Recipes routines of the First Edition, rest
assured: almost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should also be aware that some routines common to
both editions have alterations in their calling interfaces, so are not directly “plug
compatible.” A fairly complete list is: chsone, chstwo, covsrt, dfpmin, laguer,
lfit, memcof, mrqcof, mrqmin, pzextr, ran4, realft, rzextr, shoot, shootf.
There may be others (depending in part on which printing of the First Edition is taken
for the comparison). If you have written software of any appreciable complexity
that is dependent on First Edition routines, we do not recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this [1].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”

1.1 Program Organization and Control Structures 5

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now uses psdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is now hpsort)

RKQC rkqs better method

SMOOFT use convlvwith coefficients from savgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listing cited references in the order cited, and listing suggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather

