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13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,
hn =h(nA)  n=...,-3-2,-1,01,2,3,... (13.8.1)

where A is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

1
=33
as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
complete information about all spectral components in a signal h(t) up to the Nyquist
frequency, and scrambled or aliased information about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
caseis where instrumental drop-outs occur, so that datais obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set of ¢;'s.

There are some obviouswaysto get from unevenly spacedt;’sto evenly spaced ones, as
in equation (13.8.1). Interpolation isoneway: lay down agrid of evenly spaced times on your
dataand interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only haveto interpolate on missing data points. If alot of consecutive points are missing,
you might aswell just set them to zero, or perhaps*clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniquesis not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparableto gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb[1], based in part on earlier work by Barning [2] and Vanicek [3], and additionally
elaborated by Scargle[4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at times ¢; that are actually measured. Suppose that there are N data
points h; = h(t;), i = 1,...,N. Then first find the mean and variance of the data by
the usual formulas,

(13.8.2)
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h=—> h; 2= hi — h)? 13.8.3
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Now, the Lomb normalized periodogram (spectral power as a function of angular
frequency w = 2nf > 0) is defined by

L[S~ Byeoswtt; -]’

= 202 >ojcos?w(t; — )

(55, (hs — By sine(t; —7) ’

> sin?w(t; — )

—+

(13.8.4)
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570 Chapter 13.  Fourier and Spectral Applications

Here 7 is defined by the relation

tan(2wr) = 23 2L (138.5)
>, €os 2wt -

The constant 7 is a kind of offset that makes P (w) completely independent of shifting
all the ¢;’s by any constant. Lomb shows that this particular choice of offset has another,
deeper, effect: It makesequation (13.8.4) identical to the equation that onewould obtainif one
estimated the harmonic content of a data set, at a given frequency w, by linear least-squares
fitting to the model

h(t) = Acoswt + Bsinwt (13.8.6)

Thisfact gives someinsight into why the method can give results superior to FFT methods: It
weights the dataon a*“ per point” basisinstead of on a“per time interval” basis, when uneven
sampling can render the latter seriously in error.

A very common occurrenceis that the measured data points h; are the sum of aperiodic
signal and independent (white) Gaussian noise. If we are trying to determine the presence
or absence of such a periodic signal, we want to be able to give a quantitative answer to
the question, “How significant is a peak in the spectrum Px (w)?" In this question, the null
hypothesis is that the data values are independent Gaussian random values. A very nice
property of the Lomb normalized periodogram is that the viability of the null hypothesis can
be tested fairly rigorously, as we now discuss.

The word “normalized” refers to the factor o2 in the denominator of equation (13.8.4).
Scargle [4] shows that with this normalization, at any particular w and in the case of the null
hypothesis, P (w) hasan exponential probability distribution with unit mean. In other words,
the probability that Pn(w) will be between some positive z and z + dz is exp(—=z)dz. It
readily follows that, if we scan some M independent frequencies, the probability that none
give values larger than z is (1 — e™*)™. So

P(>2)=1-(1—-e )Y (13.8.7)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak
in Py (w) that we do see. A small value for the false-alarm probability indicates a highly
significant periodic signal.

To evaluate this significance, we need to know M. After all, the more frequencies we
look at, the less significant is some one modest bump in the spectrum. (Look long enough,
find anything!) A typical procedure will be to plot Py (w) as a function of many closely
spaced frequenciesin some large frequency range. How many of these are independent?

Before answering, let us first see how accurately we need to know M. The interesting
region is where the significanceis asmall (significant) number, < 1. There, equation (13.8.7)
can be series expanded to give

P(>z)~ Me™* (13.8.8)

We seethat the significance scaleslinearly with M. Practical significancelevels are numbers
like 0.05, 0.01, 0.001, etc. An error of even +50% in the estimated significance is often
tolerable, since quoted significancelevels are typically spaced apart by factors of 5 or 10. So
our estimate of M need not be very accurate.

Horne and Baliunas[5] give results from extensive Monte Carlo experiments for
determining M in various cases. In genera M depends on the number of frequencies
sampled, the number of data points N, and their detailed spacing. It turns out that M is
very nearly equal to N when the data points are approximately equally spaced, and when the
sampled frequencies “fill” (oversample) the frequency range from 0 to the Nyquist frequency
fe (equation 13.8.2). Further, the value of M is not importantly different for random
spacing of the data points than for equal spacing. When a larger frequency range than the
Nyquist range is sampled, M increases proportionally. About the only case where M differs
significantly from the case of evenly spaced points is when the points are closely clumped,
say into groups of 3; then (as one would expect) the number of independent frequencies is
reduced by a factor of about 3.
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Figure 13.8.1. Example of the Lomb algorithm in action. The 100 data points (upper figure) are at
random times between 0 and 100. Their sinusoidal component is readily uncovered (lower figure) by
the algorithm, at a significance level better than 0.001. If the 100 data points had been evenly spaced at
unit interval, the Nyquist critical frequency would have been 0.5. Note that, for these unevenly spaced
points, there is no visible aliasing into the Nyquist range.

The program period, below, calculates an effective value for M based on the above
rough-and-ready rules and assumesthat there is no important clumping. Thiswill be adequate
for most purposes. In any particular case, if it really matters, it is not too difficult to compute
abetter value of M by simple Monte Carlo: Holding fixed the number of data points and their
locationst;, generate synthetic data sets of Gaussian (normal) deviates, find the largest values
of Pn(w) for each such data set (using the accompanying program), and fit the resulting
distribution for M in equation (13.8.7).

Figure 13.8.1 shows the results of applying the method as discussed so far. In the
upper figure, the data points are plotted against time. Their number is N = 100, and their
distribution in ¢ is Poisson random. Thereis certainly no sinusoidal signal evident to the eye.
The lower figure plots P (w) against frequency f = w/2x. The Nyquist critical frequency
that would obtain if the pointswere evenly spacedisat f = f. = 0.5. Sincewe have searched
up to about twice that frequency, and oversampled the f’s to the point where successivevalues
of Pny(w) vary smoothly, we take M = 2N. The horizontal dashed and dotted lines are
(respectively from bottom to top) significance levels 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001.
One sees a highly significant peak at afrequency of 0.81. That is in fact the frequency of the
sine wave that is present in the data. (You will have to take our word for this!)

Note that two other peaks approach, but do not exceed the 50% significance level; that
is about what one might expect by chance. It is also worth commenting on the fact that the
significant peak was found (correctly) above the Nyquist frequency and without any significant
aliasing down into the Nyquist interval! That would not be possiblefor evenly spaced data. It
is possible here because the randomly spaced data has some points spaced much closer than
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572 Chapter 13.  Fourier and Spectral Applications

the “average” sampling rate, and these remove ambiguity from any aliasing.

Implementation of the normalized periodogramin codeis straightforward, with, however,
afew points to be kept in mind. We are dealing with a slow algorithm. Typically, for N data
points, we may wish to examine on the order of 2NV or 4N frequencies. Each combination
of frequency and data point has, in equations (13.8.4) and (13.8.5), not just a few adds or
multiplies, but four calls to trigonometric functions; the operations count can easily reach
several hundred times N2. It is highly desirable — in fact results in a factor 4 speedup —
to replace these trigonometric calls by recurrences. That is possible only if the sequence of
frequenciesexamined isalinear sequence. Since such a sequenceis probably what most users
would want anyway, we have built this into the implementation.

At the end of this section we describe away to evaluate equations (13.8.4) and (13.8.5)
— approximately, but to any desired degree of approximation — by a fast method [6] whose
operation count goesonly as N log N. This faster method should be used for long data sets.

The lowest independent frequency f to be examined is the inverse of the span of the
input data, max;(¢;) — min, (¢;) = T'. Thisisthefrequency such that the datacaninclude one
complete cycle. In subtracting off the data’s mean, equation (13.8.4) already assumed that you
are not interested in the data’'s zero-frequency piece — which is just that mean value. In an
FFT method, higher independent frequencieswould be integer multiples of 1/7". Becausewe
areinterested in the statistical significance of any peak that may occur, however, we had better
(over-) sample more finely than at interval 1/7", so that sample points lie close to the top of
any peak. Thus, the accompanying program includes an oversampling parameter, called of ac;
avalue ofac 2 4 might be typical in use. We also want to specify how high in frequency
to go, say fr:- One guide to choosing fr; is to compare it with the Nyquist frequency f.
which would obtain if the N data points were evenly spaced over the same span 7', that is
fe = N/(2T). The accompanying program includes an input parameter hifac, defined as
fri/ fe. The number of different frequencies Np returned by the program is then given by

Np — ofac ><2hifacN (138.9)
(You have to remember to dimension the output arrays to at least this size.)

The code does the trigonometric recurrences in double precision and embodies a few
tricks with trigonometric identities, to decrease roundoff errors. If you are an aficionado of
such things you can puzzleit out. A final detail is that equation (13.8.7) will fail because of
roundoff error if z istoo large; but equation (13.8.8) is fine in this regime.

SUBROUTINE period(x,y,n,ofac,hifac,px,py,np,nout,jmax,prob)

INTEGER jmax,n,nout,np,NMAX

REAL hifac,ofac,prob,px(np),py(np),x(n),y(n)

PARAMETER (NMAX=2000) Maximum expected value of n.

USES avevar
Given n data points with abscissas x (1:1n) (which need not be equally spaced) and ordinates
y(1:n), and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px with an increasing sequence of frequencies (not angular frequencies)
up to hifac times the “average” Nyquist frequency, and fills array py with the values of
the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
np, the dimension of px and py, must be large enough to contain the output, or an error
(pause) results. The routine also returns jmax such that py (jmax) is the maximum element
in py, and prob, an estimate of the significance of that maximum against the hypothesis of
random noise. A small value of prob indicates that a significant periodic signal is present.

INTEGER i, j

REAL ave,c,cc,cwtau,effm,expy,pnow,pymax,s,ss, sumc, sumcy,

sums, sumsh, sumsy, swtau,var,wtau,xave,xdif,xmax,xmin,yy
DOUBLE PRECISION arg,wtemp,wi (NMAX),wpi(NMAX),
wpr (NMAX) ,wr (NMAX) , TWOPID

PARAMETER (TWOPID=6.2831853071795865D0)

nout=0.5%ofac*hifac*n

if (nout.gt.np) pause ’output arrays too short in period’

call avevar(y,n,ave,var) Get mean and variance of the input data.

xmax=x (1)

xmin=x(1) Go through data to get the range of abscissas.
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13.8 Spectral Analysis of Unevenly Sampled Data 573

dou j=1,n
if (x(j) .gt.xmax) xmax=x(j)
if (x(j).1t.xmin)xmin=x(j)
enddo 11
xdif=xmax-xmin
xave=0.5% (xmax+xmin)

pymax=0.

pnow=1./(xdif*ofac) Starting frequency.

do j=1,n Initialize values for the trigonometric recurrences
arg=TWOPID*((x(j)-xave)*pnow) at each data point. The recurrences are done
wpr (j)=-2.d0*sin(0.5d0*arg) **2 in double precision.

wpi(j)=sin(arg)
wr (j)=cos(arg)
wi(j)=wpi(j)
enddo 12
do 15 i=1,nout Main loop over the frequencies to be evaluated.
px(i)=pnow
sumsh=0.
sumc=0. First, loop over the data to get 7 and related quantities.
do13 j=1,n
c=wr(j)
s=wi(j)
sumsh=sumsh+s*c
sumc=sumc+(c-s)*(c+s)
enddo 13
wtau=0.5*atan2(2.*sumsh, sumc)
swtau=sin(wtau)
cwtau=cos (wtau)
sums=0.
sumc=0.
sumsy=0. Then, loop over the data again to get the periodogram value.
sumcy=0.
dos j=1,n
s=wi(j)
c=wr(j)
ss=s*cwtau-c*swtau
cc=cxcwtauts*swtau
sums=sums+ss**2
sumc=sumc+cc**2
yy=y(j)-ave
sumsy=sumsy+yy*ss
sumcy=sumcy+yy*cc
wtemp=wr (j) Update the trigonometric recurrences.
wr (§)=Cwr (§)*wpr (j) -wi (§) *wpi(j))+wr(j)
wi(j)=(wi(j)*wpr (j)+wtemp*wpi(j))+wi(j)
enddo 14
py (1) =0.5% (sumcy**2/sumc+sumsy**2/sums) /var
if (py(i).ge.pymax) then
pymax=py (1)

jmax=i
endif
pnow=pnow+1./(ofac*xdif) The next frequency.
enddo 15
expy=exp (-pymax) Evaluate statistical significance of the maximum.

effm=2.*nout/ofac

prob=effm*expy

if (prob.gt.0.01)prob=1.-(1.-expy)**effm
return

END
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574 Chapter 13.  Fourier and Spectral Applications

Fast Computation of the Lomb Periodogram

We here show how equations (13.8.4) and (13.8.5) can be calculated — approximately,
but to any desired precision — with an operation count only of order Nplog Np. The
method uses the FFT, but it is in no sense an FFT periodogram of the data. It is an actual
evaluation of equations(13.8.4) and (13.8.5), the Lomb normalized periodogram, with exactly
that method'’s strengths and weaknesses. This fast algorithm, due to Press and Rybicki [6],
makes feasible the application of the Lomb method to data sets at |least as large as10° points;
it is already faster than straightforward evaluation of equations (13.8.4) and (13.8.5) for data
sets as small as 60 or 100 points.

Notice that the trigonometric sums that occur in equations (13.8.5) and (13.8.4) can be
reduced to four simpler sums. If we define

N

Sy = Z(h]’ — h) sin(wt;)

j=1

N
W= Z ) cos(wt;) (13.8.10)

and

N N
So = Z sin(2wt;) Co = Z cos(2wt;) (13.8.11)

N
Z(h]’ —h) cosw(t; — 1) = Cp coswt + Sy, sinwr

N
Z(h]’ —h) sinw(t; — ) = Sp coswr — Ch sinwr

~ (13.8.12)
cos’ w(ty — 1) = % %C’g cos(2wT) + = Sg sin(2wT)
j=1
N
Zsin2 wt; —7)= % — %C’g cos(2wT) — %Sg sin(2wT)
j=1

Now noticethat if thet; swereevenly spaced, thenthefour quantities S, C1, S, and Cs could
be evaluated by two complex FFTs, and the results could then be substituted back through
equation (13.8.12) to evaluate equations (13.8.5) and (13.8.4). The problem is therefore only
to evaluate equations (13.8.10) and (13.8.11) for unevenly spaced data.

Interpolation, or rather reverse interpolation — we will here call it extirpolation —
provides the key. Interpolation, as classically understood, uses several function values on a
regular mesh to construct an accurate approximation at an arbitrary point. Extirpolation, just
the opposite, replaces a function value at an arbitrary point by several function values on a
regular mesh, doing thisin such away that sums over the mesh are an accurate approximation
to sums over the original arbitrary point.

It is not hard to see that the weight functions for extirpolation are identical to those for
interpolation. Suppose that the function h(t) to be extirpolated is known only at the discrete
(unevenly spaced) points h(t;) = h;, and that the function g(¢) (which will be, e.g., cos wt)
can be evaluated anywhere. Let ¢, be a sequenceof evenly spaced points on aregular mesh.
Then Lagrange interpolation (§3.1) gives an approximation of the form

~ > wi(t)g(tr) (13.8.13)

where wy, (¢) areinterpolation weights. Now let us evaluate a sum of interest by the following
scheme:

N N
> higt;) = > hy
=1 =1

Zwkm)g(&c)} = [Z hjwkm)} g(ix) = 3 I g

(13.8.14)
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13.8 Spectral Analysis of Unevenly Sampled Data 575

Here hy = > ; hjwi(t;). Notice that equation (13.8.14) replaces the original sum by one
on the regular mesh. Notice also that the accuracy of equation (13.8.13) dependsonly on the
finenessof the mesh with respect to the function g and has nothing to do with the spacing of the
pointst; or the function h; therefore the accuracy of equation (13.8.14) also has this property.

The general outline of the fast evaluation method is therefore this: (i) Choose a mesh
size large enough to accommodate some desired oversampling factor, and large enough to
have several extirpolation points per half-wavelength of the highest frequency of interest. (ii)
Extirpolate the values h; onto the mesh and take the FFT; this gives S;, and Cj, in equation
(13.8.10). (iii) Extirpolate the constant values 1 onto another mesh, and take its FFT; this,
with some manipulation, gives Sz and C> in equation (13.8.11). (iv) Evaluate equations
(13.8.12), (13.8.5), and (13.8.4), in that order.

There are several other tricks involved in implementing this algorithm efficiently. You
can figure most out from the code, but we will mention the following points: (a) A nice way
to get transform values at frequencies 2w instead of w isto stretch the time-domain data by a
factor 2, and then wrap it to double-cover the original length. (Thistrick goesback to Tukey.)
In the program, this appears as amodulo function. (b) Trigonometric identities are used to get
from the left-hand side of equation (13.8.5) to the various needed trigonometric functions of
wT. FORTRAN identifierslike (e.g.) cwt and hs2wt represent quantitieslike (e.g.) cos wr and
% sin(2wT). (c) The subroutine spread does extirpolation onto the M most nearly centered
mesh points around an arbitrary point; its turgid code evaluates coefficients of the Lagrange
interpolating polynomials, in an efficient manner.

SUBROUTINE fasper(x,y,n,ofac,hifac,wkl,wk2,nwk,nout, jmax,prob)

INTEGER jmax,n,nout,nwk,MACC

REAL hifac,ofac,prob,wkl(awk) ,wk2(awk) ,x () ,y(n)

PARAMETER (MACC=4) Number of interpolation points per 1/4 cycle of highest fre-

USES avevar, real ft, spread quency.
Given n data points with abscissas x (which need not be equally spaced) and ordinates y,
and given a desired oversampling factor ofac (a typical value being 4 or larger), this routine
fills array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up
to hifac times the “average” Nyquist frequency, and fills array wk2 with the values of the
Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
nwk, the dimension of wkl and wk2, must be large enough for intermediate work space,
or an error (pause) results. The routine also returns jmax such that wk2(jmax) is the
maximum element in wk2, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
periodic signal is present.

INTEGER j,k,ndim,nfreq,nfreqt

REAL ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,

hs2wt,hypo,pmax,sterm,swt,var,xdif,xmax,xmin

EXTERNAL spread

nout=0.5%ofac*hifac*n

nfreqt=ofac*hifac*n*MACC Size the FFT as next power of 2 above nfreqt.

nfreq=64

if (nfreq.lt.nfreqt) then
nfreq=nfreq*2

goto 1

endif

ndim=2*nfreq

if (ndim.gt.nwk) pause ’workspaces too small in fasper’

call avevar(y,n,ave,var) Compute the mean, variance, and range of the data.

xmin=x(1)

xmax=xmin

dou j=2,n
if (x(j).1lt.xmin)xmin=x(j)
if (x(j) .gt.xmax)xmax=x(j)

enddo 11

xdif=xmax-xmin

do 12 j=1,ndim Zero the workspaces.
wk1(j)=0.
wk2(j)=0.

enddo 12
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576 Chapter 13.  Fourier and Spectral Applications

fac=ndim/(xdif*ofac)
fndim=ndim
do13 j=1,n Extirpolate the data into the workspaces.
ck=1.+mod ((x(j)-xmin) *fac,fndim)
ckk=1.+mod (2.*(ck-1.) ,fndim)
call spread(y(j)-ave,wkl,ndim,ck,MACC)
call spread(l.,wk2,ndim,ckk,MACC)
enddo 13
call realft(wkl,ndim,1) Take the Fast Fourier Transforms.
call realft(wk2,ndim,1)
df=1./(xdif*ofac)
k=3
pmax=-1.
do 14 j=1,nout Compute the Lomb value for each frequency.
hypo=sqrt (wk2 (k) **2+wk2 (k+1) **2)
hc2wt=0.5%wk2 (k) /hypo
hs2wt=0.5%wk2(k+1) /hypo
cwt=sqrt (0.5+hc2wt)
swt=sign(sqrt(0.5-hc2wt) ,hs2ut)
den=0.5*n+hc2wt*wk2 (k) +hs2wt*wk2 (k+1)
cterm=(cwt*wkl(k)+swt*wkl(k+1))**2/den
sterm=(cwt*wkl (k+1)-swt*wkl (k) )**2/(n-den)
wk1(j)=j*df
wk2(j)=(cterm+sterm)/(2.*var)
if (wk2(j).gt.pmax) then
pmax=wk2(j)
jmax=j
endif
k=k+2
enddo 1 Estimate significance of largest peak value.
expy=exp (-pmax)
effm=2.*nout/ofac
prob=effm*expy
if (prob.gt.0.01)prob=1.-(1.-expy)**effm
return
END

SUBROUTINE spread(y,yy,n,x,m)
INTEGER m,n
REAL x,y,yy(n)

Given an array yy of length n, extirpolate (spread) a value y into m actual array elements
that best approximate the “fictional” (i.e., possibly noninteger) array element number x.

The weights used are coefficients of the Lagrange interpolating polynomial.
INTEGER ihi,ilo,ix,j,nden,nfac(10)
REAL fac
SAVE nfac
DATA nfac /1,1,2,6,24,120,720,5040,40320,362880/
if(m.gt.10) pause ’factorial table too small in spread’
ix=x
if (x.eq.float(ix))then

yy (ix)=yy (ix)+y
else

ilo=min(max(int (x-0.5*m+1.0),1),n-m+1)

ihi=ilo+m-1

nden=nfac (m)

fac=x-ilo

dou j=ilo+1,ihi

fac=fac*(x-j)

enddo 11

yy(ihi)=yy (ihi)+y*fac/(nden*(x-ihi))

do12 j=ihi-1,ilo,-1

nden=(nden/ (j+1-ilo))*(j-ihi)
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yy () =yy(§)+y*fac/(nden*(x-j))
enddo 12
endif
return
END
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

b
I= / e h(t)dt , (13.9.1)
or the equivalent real and imaginary parts
b b
I. = / cos(wt)h(t)dt I = / sin(wt)h(t)dt , (13.9.2)

and onewantsto evaluatethisintegral for many different valuesof w. In casesof interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a,b] into M subintervals, where M is a large integer, and define

b—a
M bl
Notice that ho = h(a) and har = h(b), and that there are M + 1 values h;. We can
approximate the integral 7 by a sum,

A=

ti=a+jA, h;=ht;), j=0,...,M (13.9.3)

M-—-1
I~A Y hjexpliwt;) (13.9.4)

Jj=0

which is at any rate first-order accurate. (If we centered the h;’s and the ¢;’s in the intervals,
we could be accurate to second order.) Now for certain values of w and M, the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can choose M to be an integer
power of 2, and define a set of special w’s by

_ 2m™m

mA = 1395
i = 20 (1395)
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