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q=1.
if (mwt.eq.0) then
do 15 i=1,ndata
chi2=chi2+(y(i)-a-b*x(i))**2
enddo 15

sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-

siga=sigaxsigdat ing chi2, and adjust the standard devia-
sigb=sigb*sigdat tions.
else

do 16 i=1,ndata
chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
enddo 16
if (ndata.gt.2) q=gammq(0.5*(ndata-2),0.5%chi2) Equation (15.2.12).
endif
return
END

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the y;’s, but aso in
the x;’s, then the task of fitting a straight-line model

y(z) =a+ bz (15.3.1)

is considerably harder. It is straightforward to write down the x? merit function for this case,

—a— bxz)
(a,b) Z; T (15.3.2)
where o, ; and o, ; are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of eguation (15.3.2) can be understood both
as the variance in the direction of the smallest x? between each data point and the line with
slope b, and also as the variance of the linear combination y; — a — bx; of two random
variables z; and y;,

Var(y; — a — bx;) = Var(y;) + b°Var(z;) = oo, + b0z, = 1/w; (15.3.3)
The sum of the square of N random variables, each normalized by its variance, is thus
x2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope dx?/0b = 0 nonlinear. However, the corresponding condition for the intercept,
dx?/da = 0, is il linear and yields

a= [Z w;(y; — bx;) /Z Wi (15.3.4)

where the w;’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
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15.3 Straight-Line Data with Errors in Both Coordinates 661

Figure 15.3.1. Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This givesthe standard error o4, and aso the
value s. The standard error o, can then be found by the geometric relation o2 = s2 + 2.

function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.

Because of the finite error bars on the z;'s, the minimum X2 as a function of b will
be finite, though usually large, when b equals infinity (line of infinite slope). The angle
0 = arctan b isthus more suitable as a parametrization of slopethan b itself. The value of x?2
will then be periodic in 6 with period 7 (not 27!). If any data points have very small o, ’s
but moderate or large o, ’s, then it is also possible to have a maximum in x2 near zero slope,
0 ~ 0. In that case, there can sometimes be two x? minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess for b (or 8). Our strategy, implemented below, is to scale the
y;'S S0 as to have variance equal to the x;’s, then to do a conventional (asin §15.2) linear fit
with weights derived from the (scaled) sum af, ; +o2,. Thisyields agood starting guess for
b if the data are even plausibly related to a straight-line model.

Finding the standard errors o, and o on the parameters a and b is more complicated.
We will seein §15.6 that, in appropriate circumstances, the standard errorsin a and b are the
respective projections onto the a and b axes of the “confidence region boundary” where x?2
takes on a value one greater than its minimum, Ax? = 1. In the linear case of §15.2, these
projections follow from the Taylor series expansion
N 1 82X2 9 82 X2 9 82X2
IR R G
Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; moreimportant, the lowest-order term frequently givesa poor approxima-
tion to Ax?2. Our strategy is therefore to find the roots of Ax? = 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. §9.1).

Because a is minimized at each stage of varying b, successful numerical root-finding
leads to a value of Aa that minimizes x? for the value of Ab that gives Ax? = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b axis,

AX2

AaAb (15.3.5)
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and thus . It does not, however, give the tangent projection of the confidence region onto
the a axis. In the figure, we have found the point labeled B; to find o, we need to find the
point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) that o2 = r? + s. The value of s is known
from having found the point B. The value of r follows from equations (15.3.2) and (15.3.3)
applied at the x? minimum (point O in the figure), giving

21 / S w, (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
(a, ) space than in (a, b) space. That isin fact how the following program works. Since
it is conventional, however, to return standard errors for a and b, not a and 6, we finaly
use the relation

op = 09/ cos? 0 (15.3.7)

We caution that if b and its standard error are both large, so that the confidenceregion actually
includesinfinite slope, then the standard error o is not very meaningful. Thefunction chixy
is normally called only by the routine fitexy. However, if you want, you can yourself
explore the confidenceregion by making repeated callsto chixy (whose argument isan angle
0, not a slope b), after a single initializing call to fitexy.

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable
(returned probability istoo small), the standard errors o, and o, are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible valuesfor o, and o.

SUBROUTINE fitexy(x,y,ndat,sigx,sigy,a,b,siga,sigb,chi2,q)
INTEGER ndat,NMAX
REAL x(ndat),y(ndat),sigx(ndat),sigy(ndat),a,b,siga,sigb,chi2,
q,POTN,PI,BIG,ACC
PARAMETER (NMAX=1000,POTN=1.571000,BIG=1.e30,PI=3.14159265,
ACC=1.e-3)
USES avevar, brent, chi xy, fit, ganmyg, nmbr ak, zbr ent
Straight-line fit to input data x(1:ndat) and y(1:ndat) with errors in both z and y, the
respective standard deviations being the input quantities sigx (1:ndat) and sigy (1:ndat).
Output quantities are a and b such that y = a + bx minimizes x2, whose value is returned
as chi2. The x?2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and
sigb. These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the
data are consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG,
then the data are consistent with all values of b.
INTEGER j,nn
REAL xx (NMAX) ,yy(NMAX) ,sx (NMAX) , sy (NMAX) ,ww (NMAX) , swap, amx, amn
,varx,vary,aa,offs,ang(6),ch(6),scale,bmn,bmx,dl,d2
,r2,duml,dum2,dum3,dumé4,dum5,brent, chixy,gammq,zbrent
COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn
EXTERNAL chixy
if (ndat.gt.NMAX) pause ’NMAX too small in fitexy’
call avevar(x,ndat,duml,varx) Find the = and y variances, and scale the data
call avevar(y,ndat,duml,vary) into the common block for communication
scale=sqrt(varx/vary) with the function chixy.

nn=ndat
dou j=1,ndat
xx(§)=x(3)

yy(3)=y(j)*scale
sx(j)=sigx(j)
sy(j)=sigy(j)*scale

ww (j)=sqrt (sx(j)**2+sy (j)**2) Use both z and y weights in first trial fit.
enddo 11
call fit(xx,yy,nn,ww,1,duml,b,dum?,dum3,dumé,dumb) Trial fit for b.

offs=0.
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15.3 Straight-Line Data with Errors in Both Coordinates 663

ang(1)=0.

ang(2)=atan(b)

ang(4)=0.

ang(5)=ang(2)

ang(6)=POTN

do12 j=4,6
ch(j)=chixy(ang(j))

enddo 12

Construct several angles for reference points.
Make b an angle.

call mnbrak(ang(1) ,ang(2),ang(3),ch(1),ch(2),ch(3),chixy) Bracket the x2 min-
chi2=brent(ang(1) ,ang(2),ang(3),chixy,ACC,b) imum and then locate it with brent

chi2=chixy(b)
a=aa
g=gammq (0.5 (nn-2) ,0.5*chi2)
r2=0.
do13 j=1,nn
r2=r2+ww(j)
enddo 13
r2=1./r2
bmx=BIG
bmn=BIG
offs=chi2+1.
dos j=1,6
if (ch(j).gt.offs) then
d1=mod(abs(ang(j)-b),PI)
d2=PI-d1
if (ang(j) .1t.b)then
swap=dl
d1=d2
d2=swap
endif
if (d1.1t.bmx) bmx=dil
if (d2.1t.bmn) bmn=d2
endif
enddo 14
if (bmx.lt. BIG) then

bmx=zbrent (chixy,b,b+bmx,ACC) -b

amx=aa-—a

bmn=zbrent (chixy,b,b-bmn,ACC)-b

amn=aa-a

Compute x? probability.
Save the inverse sum of weights at the mini-

mum.

Now, find standard errors for b as points where
Ax2 = 1.

Go through saved values to bracket the desired
roots. Note periodicity in slope angles.

Call zbrent to find the roots.

sigb=sqrt (0.5 (bmx**2+bmn**2) ) /(scale*cos (b) **2)
siga=sqrt (0.5* (amx**2+amn**2)+r2) /scale Error in a has additional piece r2.

else
sigb=BIG
siga=BIG
endif
a=a/scale
b=tan(b)/scale
return
END

FUNCTION chixy(bang)

REAL chixy,bang,BIG

INTEGER NMAX

PARAMETER (NMAX=1000,BIG=1.E30)

Captive function of fitexy, returns the value of (x? — of£fs) for the slope b=tan(bang).

Unscale the answers.

Scaled data and offs are communicated via the common block /fitxyc/.

INTEGER nn, j

REAL xx (NMAX) ,yy(NMAX) ,sx (NMAX) ,sy (NMAX) ,ww (NMAX) ,aa,offs,

avex,avey,sumw,b

COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn

b=tan(bang)
avex=0.
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664 Chapter 15.  Modeling of Data

avey=0.
sumw=0.
dou j=1,nn
ww (§)=(b*sx(j)) **2+sy () **2
if (ww(j).1t.1./BIG) then
ww(j)=BIG
else
ww(j)=1./ww(j)
endif
sumw=sumw+ww (j)
avex=avex+ww (j)*xx(j)
avey=avey+ww (j)*yy (j)
enddo 11
avex=avex/sumw
avey=avey/sumw
aa=avey-b*avex
chixy=-offs
do12 j=1,nn
chixy=chixy+uw(j)*(yy(j)-aa-b*xxx(j))**2
enddo 12
return
END

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming's[1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References[2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in[7]. All this commotion has attracted the Bayesians[8-10], who
have still different points of view.

CITED REFERENCES AND FURTHER READING:
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15.4 General Linear Least Squares 665

15.4 General Linear Least Squares

An immediate generalization of §15.2 isto fit a set of data points (z;, y;) toa
model that is not just alinear combination of 1 and = (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
couldbel,z,22,...,2M~1 inwhich case their genera linear combination,

y(x) = ay + agr +azx? + -+ apyrM1 (15.4.2)

is a polynomial of degree M — 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.
The general form of this kind of modd is

M
y(r) = apXe(x) (15.4.2)
k=1

where X;(z),..., Xy (z) are arbitrary fixed functions of xz, caled the basis
functions.

Note that the functions X}, () can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters ay.

For these linear models we generdlize the discussion of the previous section
by defining a merit function

s n 5= S0 aXee) |

=) l : k=1 : ] (15.4.3)
i=1 Ti

As before, o; is the measurement error (standard deviation) of the ith data point,

presumed to be known. If the measurement errors are not known, they may al (as

discussed at the end of §15.1) be set to the constant value o = 1.

Once again, we will pick as best parameters those that minimize y2. There are
several different techniquesavailable for finding thisminimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N x M components are constructed from the M
basis functions evaluated at the IV abscissas x;, and from the N measurement errors
o4, by the prescription

X (i)
g;
Thematrix A iscalled the design matrix of thefitting problem. Noticethat in genera
A has more rows than columns, N > M, since there must be more data points than
model parametersto be solved for. (You can fit a straight lineto two points, but not a
very meaningful quintic!) The design matrix isshown schematically in Figure 15.4.1.

Also define a vector b of length N by
b =L (15.4.5)
g;
and denote the M vector whose components are the parameters to be fitted,
ai,...,ap, by a.

Ay = (15.4.4)
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