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16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x+ mh, zm) for m = 1, 2, . . . , n− 1

y(x +H) ≈ yn ≡
1

2
[zn + zn−1 + hf(x +H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns
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out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x+ H) =

∞∑
i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x +H) ≈
4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)
INTEGER nstep,nvar,NMAX
REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)
EXTERNAL derivs
PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n
REAL h,h2,swap,x,ym(NMAX),yn(NMAX)
h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)
yn(i)=y(i)+h*dydx(i) First step.

enddo 11

x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h
do 13 n=2,nstep General step.

do 12 i=1,nvar
swap=ym(i)+h2*yout(i)
ym(i)=yn(i)
yn(i)=swap

enddo 12

x=x+h
call derivs(x,yn,yout)
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enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END
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16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular points inside the
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this; more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in §16.7.)

Three key ideas are involved. The first is Richardson’s deferred approach
to the limit, which we already met in §4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsize h. That
analytic function can be probed by performing the calculation with various values
of h, none of them being necessarily small enough to yield the accuracy that we
desire. When we know enough about the function, we fit it to some analytic form,
and then evaluate it at that mythical and golden point h = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength of rational function extrapolation in Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex


