902 Chapter 20.  Less-Numerical Algorithms

20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would use L; = —log, p; bits to encode character i (intherange 1 < i < Np),
if p; isits probability of occurrence. Huffman coding gives away of rounding the
L;'sto close integer values and constructing a code with those lengths. Arithmetic
coding [1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bitsl It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbolsin any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent al phanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a redl
number R intherange 0 < R < 1. The longer the message, the more precision
required of R. Thisisbest illustrated by an example, so let usreturn to thefictitious
language, Vowdllish, of the previous section. Recall that Vowellish hasab character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 showshow amessage beginning “10U” is encoded:
The interval [0,1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the corresponding p;. We see that the first
message character, “1”, narrowstherange of Rt00.37 < R < 0.46. Thisinterval is
now subdividedintofive subintervals, again withlengths proportiona tothep;’s. The
second message character, “O”, narrows the range of R t0 0.3763 < R < 0.4033.
The“U” character further narrows therange to 0.37630 < R < 0.37819. Any value
of R inthisrange can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 isin thisrange, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see §20.4.)

Of course there is the problem of knowing when to stop decoding. The
fraction .011000001 represents not simply “IOU,” but “IOU. . .,” where the élipses
represent an infinite string of successor characters. To resolve this ambiguity,
arithmetic coding generally assumes the existence of a special N, + 1th character,
EOM (end of message), which occurs only once at the end of the input. Since
EOM has a low probability of occurrence, it gets alocated only a very tiny piece
of the number line.

In the above example, we gave R as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required of R for along message. The answer isthat R isnever actually represented
al a once. At any give stage we have upper and lower bounds for R represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can |eft-shift them away and bring in new digitsat the
low-significance end. The routines below have a parameter NWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs,) Since the process of discarding old digitsand bringing in new onesis
performed identically on encoding and decoding, everything stays synchronized.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



20.5 Arithmetic Coding 903

10 — 0.46 0.4033 0.37819
4 A 1A 1A A
0.9 — 045/ - 0.3780
7] _ 0.400 —
0.8 ] 04 _: _ 0.3778 —
07 E J1e 1 E 03776 4 E
0.6 - 7 0.3774 —
] 0.42 — ]
0.5 — ] 0.390 — 0.3772 —
’ 0.41 i
04! 1 ] 0.3770 — !
. 0.40 _
0.3 - ] 0-385 _ 0.3768 —
10 o 1o 0
0.2 039 . ] 0.3766 —
E _ 0.380 —
0.1 0.38 7 N 0.3764 —
Ju Ju 1u u
0.0 0.37 0.3763 0.37630
Figure 20.5.1. Arithmetic coding of the message “IOU..." in the fictitious language Vowellish.

Successive characters give successively finer subdivisions of the initial interval between 0 and 1. The
final value can be output asthe digitsof afractionin any desired radix. Note how the subinterval allocated
to a character is proportional to its probability of occurrence.

Theroutinearcmak constructsthe cumulative frequency distribution table used
to partition the interval at each stage. In the principal routine arcode, when an
interval of size jdif isto be partitioned in the proportionsof somen to somentot,
say, then we must compute (n*jdif) /ntot. With integer arithmetic, the numerator
is likely to overflow; and, unfortunately, an expression like jdif/(ntot/n) isnot
equivalent. In the implementation below, we resort to double precision floating
arithmetic for this calculation. Not only is this inefficient, but different roundoff
errorscan (albeit very rarely) make different machines encode differently, though any
one type of machine will decode exactly what it encoded, since identical roundoff
errors occur in the two processes. For serious use, one needs to replace this floating
calculation with an integer computation in a double register (not available to the
FORTRAN programmey).

The internally set variable minint, which is the minimum alowed number
of discrete steps between the upper and lower bounds, determines when new |ow-
significance digitsare added. minint must be large enough to provide resol ution of
al theinput characters. That is, we must have p; x minint > 1 for al i. A value
of 100N.p, or 1.1/ min p;, whichever islarger, is generally adequate. However, for
safety, the routine below takesminint to be as large as possible, with the product
minint*nradd just smaller than overflow. This resultsin some time inefficiency,
and in afew unnecessary characters being output at the end of a message. You can

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(eoLIBWY YUON SpPISINO) yn'oe wed dnd@ape.i 0] jlews puas o ‘(Ajuo eolswy YUON) £2t/-2/8-008-T [[ed 10 WO U MMM//:dny aNsgam JSIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



904 Chapter 20.  Less-Numerical Algorithms

decrease minint if you want to live closer to the edge.

A final safety featurein arcmak isitsrefusal to believe zero valuesin the table
nfreq; a0 istreated as if it were a 1. If this were not done, the occurrence in a
message of a single character whosenfreq entry is zero would result in scrambling
the entire rest of the message. If you want to live dangeroudly, with a very dightly
more efficient coding, you can delete themax( ,1) operation.

SUBROUTINE arcmak(nfreq,nchh,nradd)

INTEGER nchh,nradd,nfreq(nchh),MC,NWK,MAXINT

PARAMETER (MC=512,NWK=20,MAXINT=2147483647)
Given a table nfreq(1:nchh) of the frequency of occurrence of nchh symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables
for arithmetic compression.
Parameters: MC is largest anticipated value of nchh; NWK is the number of working digits
(see text); MAXINT is a large positive integer that does not overflow.

INTEGER j,jdif,minint,nc,nch,nrad,ncum,

ncumfq (MC+2) ,ilob (NWK) , iupb (NWK)

COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum

SAVE /arccom/

if (nchh.gt.MC)pause ’MC too small in arcmak’

if (nradd.gt.256)pause ’nradd may not exceed 256 in arcmak’

minint=MAXINT/nradd

nch=nchh

nrad=nradd

ncumfq(1)=0

dou j=2,nch+1
ncumfq(j)=ncumfq(j-1)+max(nfreq(j-1),1)

enddo 11

ncumfq(nch+2)=ncumfq(nch+1)+1

ncum=ncumfq (nch+2)

return

END

Individual characters in a message are coded or decoded by theroutinearcode,
which in turn uses the utility arcsum.

SUBROUTINE arcode(ich,code,lcode,lcd,isign)
INTEGER ich,isign,lcd,lcode,MC,NWK
CHARACTER#*1 code(lcode)
PARAMETER (MC=512,NWK=20)
USES arcsum
Compress (isign = 1) or decompress (isign = —1) the single character ich into or out
of the character array code (1:1code), starting with byte code (1cd) and (if necessary)
incrementing lcd so that, on return, 1cd points to the first unused byte in code. Note
that this routine saves the result of previous calls until a new byte of code is produced, and
only then increments 1cd. An initializing call with isign=0 is required for each different
array code. The routine arcmak must have previously been called to initialize the common
block /arccom/. A call with ich=nch (as set in arcmak) has the reserved meaning “end
of message.”
INTEGER ihi,j,ja,jdif,jh,jl,k,m,minint,nc,nch,nrad,ilob(NWK),
iupb (NWK) ,ncumfq(MC+2) ,ncum, JTRY
COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum
SAVE /arccom/
The following statement function is used to calculate (k*j)/m without overflow. Program
efficiency can be improved by substituting an assembly language routine that does integer
multiply to a double register.
JTRY(j,k,m)=int ((dble(k)*dble(j))/dble(m))
if (isign.eq.0) then Initialize enough digits of the upper and lower bounds.
jdif=nrad-1
dou j=NWK,1,-1

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



20.5 Arithmetic Coding 905

iupb(j)=nrad-1
ilob(j)=0
nc=j
if (jdif.gt.minint)return Initialization complete
jdif=(jdif+1)*nrad-1
enddo 11
pause ’NWK too small in arcode’
else
if (isign.gt.0) then If encoding, check for valid input character.
if(ich.gt.nch.or.ich.1t.0)pause ’bad ich in arcode’
else If decoding, locate the character ich by bisection.
ja=ichar(code(lcd))-ilob(nc)
do12 j=nc+1,NWK
ja=jaxnrad+(ichar(code(j+lcd-nc))-ilob(j))
enddo 12
ich=0
ihi=nch+1
if (ihi-ich.gt.1) then
m=(ich+ihi)/2
if (ja.ge.JTRY(jdif,ncumfq(m+1),ncum)) then
ich=m
else
ihi=m
endif
goto 1
endif
if (ich.eq.nch)return Detected end of message
endif
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb)
jh=JTRY (jdif ,ncumfq(ich+2) ,ncum)
j1=JTRY (jdif ,ncumfq(ich+1) ,ncum)

jdif=jh-j1

call arcsum(ilob,iupb, jh,NWK,nrad,nc)

call arcsum(ilob,ilob,jl,NWK,nrad,nc) How many leading digits to output
do 13 j=nc,NWK (if encoding) or skip over?

if (ich.ne.nch.and.iupb(j) .ne.ilob(j))goto 2
if(lcd.gt.lcode)pause ’lcode too small in arcode’
if (isign.gt.0) code(lcd)=char(ilob(j))

lcd=lcd+1
enddo 13
return Ran out of message. Did someone forget to encode
nc=j a terminating ncd?
j=0 How many digits to shift?
if (jdif.lt.minint) then

j=j*1

jdif=jdif*nrad
goto 3
endif
if (nc-j.1lt.1) pause ’NWK too small in arcode’
if (j.ne.0)then Shift them.

do 14 k=nc,NWK
iupb (k-j)=iupb (k)
ilob(k-j)=ilob(k)
enddo 14

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

endif

nc=nc-j

do 15 k=NWK-j+1,NWK
iupb (k) =0
ilob(k)=0

enddo 15

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

endif
return Normal return.
END



906 Chapter 20.  Less-Numerical Algorithms

SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
INTEGER ja,nc,nrad,nwk,iin(*),iout (%)

Used by arcode. Add the integer ja to the radix nrad multiple-precision integer iin(nc. .nwk).

Return the result in iout(nc..nwk)
INTEGER j, jtmp,karry
karry=0
dou j=nwk,nc+1,-1
jtmp=ja
ja=ja/nrad
iout (j)=1iin(j)+(jtmp-ja*nrad)+karry
if (iout(j).ge.nrad) then
iout (j)=iout (j)-nrad
karry=1
else
karry=0
endif
enddo 11
iout (nc)=iin(nc)+jatkarry
return
END

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set al the components of nfreq equal, say, to 1.

CITED REFERENCES AND FURTHER READING:

Bell, T.C., Cleary, J.G., and Witten, I.H. 1990, Text Compression (Englewood Cliffs, NJ: Prentice-
Hall).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, Communications of the ACM, vol. 30, pp. 520—
540. [1]

20.6 Arithmetic at Arbitrary Precision

Let’s compute the number 7 to a couple of thousand decimal places. In doing
so, we'll learn some things about multiple precision arithmetic on computers and
meet quite an unusua application of the fast Fourier transform (FFT). We'll also
develop a set of routinesthat you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic agorithm for 7. Useful algorithms are
quadraticaly convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms for 7 are based on the AGM
(arithmetic geometric mean) method, which also finds application to the calculation
of elipticintegrals (cf. §6.11) and in advanced implementations of the ADI method
for dliptic partial differential equations (§19.5). Borwein and Borwein[1] treat this
subject, which is beyond our scope here. One of their algorithms for 7 starts with
the initializations

Xo =12
To=2+v2 (20.6.1)
Yy = V2

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



