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Of course you should calculate repeated subexpressions, likec/d or d/c, only once.

Complex square root is even more complicated, since we must both guard
intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the sguare root of ¢ + id, first compute

0 C:d:o
1/|C|\/1+— V1+(d/e)? le| > |d|
w= 2 - (5.4.6)
le/d| + /1 + (c/d)?
Vidi 5 el < d
Then the answer is
0 w=0
o d
w—l—z(—) w#0,¢>0
2w
vV id = 547
et m—|—iw w#0,¢<0,d>0 ( )
2w
M—iw w#0,¢<0,d<0

CITED REFERENCES AND FURTHER READING:
Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33—49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, eg.,

(n+ 1)Ppt1(x) = 2n+ DxPy(x) —nPy_1(z) (65.1)
Tsr(z) = 2x—an(x) (@) (55.2)
nEyy1(z) =e % —zE,(x) (653

cosnf = 2cosf cos(n — 1)0 — cos(n — 2)0 (5.5.9)
sinnf = 2 cosfsin(n — 1)6 — sin(n — 2)6 (5.5.5)

wherethefirst threefunctionsare Legendre polynomials, Bessel functionsof thefirst
kind, and exponential integrals, respectively. (For notation see[1].) These relations
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5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 173

are useful for extending computational methods from two successive values of n to
other values, either larger or smaler.

Equations(5.5.4) and (5.5.5) motivate usto say afew words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functionswhose arguments
form alinear sequence § = 6y + nd, n = 0,1,2, ..., are efficiently calculated by
the following recurrence,

cos(0 + 6) = cosf — [acosf + [Fsind)

5.5.6
sin(f + ¢) = sinf — [asinf — [ cos 0] ( )
where « and (§ are the precomputed coefficients
o2 (0 o
a = 2sin 3 B =sind (5.5.7)

The reason for doing things thisway, rather than with the standard (and equivalent)
identities for sums of angles, is that here o and 5 do not lose significance if the
incremental ¢ is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin # and cos 6 can be
calculated via a single call to tan:

6 1—¢? . 2t
t = tan (§> cosf = 1—|——t2 sinf = 1—|——t2 (558)

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings. However, notethat special treatment is required if § — +x. And aso
note that many modern machines have very fast trig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable
against roundoff error in the direction that you propose to go (either increasing n or
decreasing n). A three-term linear recurrence relation

Ynt1 + @nlYn + bnyn_1 =0, n=12,... (5.5.9)

hastwo linearly independent solutions, f,, and g,, say. Only one of these corresponds
to the sequence of functions f,, that you are trying to generate. The other one g,,
may be exponentially growing in the direction that you want to go, or exponentially
damped, or exponentialy neutral (growingor dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
usein that direction. Thisisthe case, e.g., for (5.5.2) in the direction of increasing
n, when z < n. You cannot generate Bessdl functions of high n by forward
recurrence on (5.5.2).
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174 Chapter 5.  Evaluation of Functions

To state things a bit more formaly, if
fn/gn —0 & mn— o0 (5.5.10)

then f,, iscalled theminimal solution of the recurrence relation (5.5.9). Nonminimal
solutionslike g,, are called dominant solutions. The minimal solutionisunique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of f,, to
agiven g,,. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction) [1] givealist of recurrences that
are stable in the increasing or decreasing directions. That list does not contain al
possible formulas, of course. Given a recurrence relation for some function f,, ()
you can test it yourself with about five minutes of (human) labor: For a fixed z
in your range of interest, start the recurrence not with true values of f;(z) and
fij+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing from j5), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, then the recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically,
then there is an exponentially growing solution of the recurrence. If you know
that the function that you want actually corresponds to the growing solution, then
you can keep the recurrence formula anyway e.g., the case of the Bessel function
Y, (z) for increasing n, see §6.5; if you don’'t know which solution your function
corresponds to, you must at this point reject the recurrence formula. Notice that
you can do this test before you go to the trouble of finding a numerica method for
computing the two starting functions f;(z) and f;1(x): stability is a property of
the recurrence, not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by asimilar one that islinear with constant coefficients. For example,
the relation (5.5.2) becomes

Yn+1 = 2YYn + Yn—1 =10 (5.5.11)

where v = n/x is treated as a constant. You solve such recurrence relations
by trying solutions of the form y, = «™. Subgtituting into the above recur-
rence gives

a>—2ya+1=0 o a=~v++42-1 (5.5.12)

Therecurrence is stableif |a| < 1 for al solutionsa. This holds (as you can verify)
if |y| < 1orn < z. The recurrence (5.5.2) thus cannot be used, starting with Jy ()
and Jy(x), to compute J,,(x) for large n.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron [2]:

TheoremA.  If in(5.5.9) a,, ~ an®, b, ~ bn® asn — oo, and 3 < 2a, then

Gnt1/gn ~ —an®, fat1/fa ~ —(bja)n = (5.5.13)
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5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 175

and f, isthe minima solution to (5.5.9).
Theorem B.  Under the same conditions as Theorem A, but with § = 2«
consider the characteristic polynomial

t*+at+b=0 (5.5.14)
If the roots ¢, and ¢, of (5.5.14) have distinct moduli, [¢t1| > |t2| say, then

gnt1/gn ~tin®, a1/ fo ~ tan® (5.5.15)

and f, is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, seel3].)

How do you proceed if the solution that you desire is the minimal solution?
The answer lies in that old aphorism, that every cloud has a silver lining: If a
recurrence relation is catastrophically unstablein one direction, then that (undesired)
solution will decrease very rapidly in the reverse direction. This means that you
can start with any seed values for the consecutive f; and f;,; and (when you have
gone enough steps in the stable direction) you will converge to the sequence of
functions that you want, times an unknown normalization factor. If there is some
other way to normalize the sequence (e.g., by aformula for the sum of the f,,’s),
then this can be a practical means of function evaluation. The method is called
Miller’'s algorithm. An example often given[1,4] uses equation (5.5.2) in just this
way, aong with the normalization formula

1= Jo(x) + 2Ja(x) + 2J4(x) + 2J6(z) + - - - (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations and continued fractions. Rewrite the recurrence relation (5.5.9) as

n b?’L
In (5.5.17)
Yn—1 (7% + yn+1/yn
Iterating this equation, starting with n, gives
n b?’L n
In__ busr (5.5.18)
Yn—1 Ap — Qp41 —

Pincherle’'s Theorem (2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minima solution f,,, inwhich case it convergesto f,,/ f.—1. Thisresult, usualy for
the case n = 1 and combined with some way to determine f;, underlies many of the
practica methods for computing special functionsthat we give in the next chapter.
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176 Chapter 5.  Evaluation of Functions

Clenshaw’s Recurrence Formula

Clenshaw's recurrence formulal5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

N N
F0) = cpcoskd or  f(z) = cpPru(z)
k=0 k=0

Here is how it works: Suppose that the desired sum is

N
f@) = cxFi(x) (55.19)
k=0

and that F} obeys the recurrence relation
Foi1(z) = an,z)F,(z) + B(n, ) F—1(x) (5.5.20)

for some functions a(n,z) and G(n,x). Now define the quantities y;, (k =
N,N —1,...,1) by the following recurrence:

YN+2 =Yn+1 =0
(5.5.21)
Y = a(k,x)ka +6(k + 1ax)yk+2 + ¢k (k = Na N — 1a SRRR) 1)

If you solve eguation (5.5.21) for ¢, on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

fl@)=---
+ [ys — (8, x)yo — B(9, x)y10] Fs ()
+ [yr — (7, 2)ys — B(8, x)yo| F7 ()
+ [ys — (6, 2)yr — B(7, )ys] Fo ()
+ [ys — (5, 2)ys — B(6, ©)y7| F5(x) (5.5.22)
L.
+ [y2 — a2, 7)ys — B(3, x)ya] Fa(x)
+ [y1 — (L, 2)y2 — B(2, 2)ys| F1 ()
+ [eo + B(1, 2)y2 — B(1, 2)y2] Fo(x)

Notice that we have added and subtracted 3(1, x)y- in thelast line. If you examine
the terms containing a factor of ys in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the other y;.’s down
through . The only surviving terms in (5.5.22) are

f(x) = B(1, z)Fo(x)y2 + Fi(x)yr + Fo(x)co (5.5.23)
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5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 177

Equations (5.5.21) and (5.5.23) are Clenshaw’srecurrence formulafor doing the sum
(5.5.19): You make one pass down through the y;'s using (5.5.21); when you have
reached y, and y; you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ¢ in a
downward order, with k& decreasing. At each stage, the effect of all previous cj’s
is “remembered” as two coefficients which multiply the functions Fj1 and Fj,
(ultimately Fy and F1). If the functions F), are small when £ is large, and if the
coefficients ¢;, are small when k& is small, then the sum can be dominated by small
F}.’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

Ji5(1) = 0% Jo(1)+0x Jy(1) 4 ... 40 x Jig(1) + 1 x Ji5(1)  (55.24)

Here Jy5, which is tiny, ends up represented as a canceling linear combination of
Jo and Jy, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates c’s in an upward direction. The relevant equations are

Yy—2=y-1=0 (5.5.25)
1
Y = m[yk_2 —a(k,x)yr—1 — cx,
(k=0,1,...,N—1) (5.5.26)

f(ll) = CNFN({IJ) — 6(]\7, x)FN_l(x)yN_l — FN(x)yN_Q (5527)

The rare case where equations (5.5.25)—(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly egua in
magnitude. Other than in this special case, Clenshaw’s recurrence is ways stable,
independent of whether the recurrence for the functions F}, is stable in the upward
or downward direction.
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178 Chapter 5.  Evaluation of Functions

5.6 Quadratic and Cubic Equations

The roots of simple a gebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation
ar® +br+c=0 (5.6.1)

with real coefficients a, b, ¢, namely

b+t Vb2 -4
T = u (5.6.2)
2a
and )
c
r= - 56.3
—b+ Vb2 —4ac ( )

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If
either a or ¢ (or both) are smdl, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

g= _% [b + sgn(b)v/b? — 4ac] (5.6.4)

Then the two roots are

sr=%  ad  zy=S (5.6.5)
a q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*/b% — 4ac) > 0 (5.6.6)
where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh " and cosh™" are in fact just logarithms of
solutions to such eguations,

sinh™'(z) = In(z+ Va2 +1) (5.6.7)
cosh™'(z) = £In(z + Va2 — 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative z, use the symmetry
sinh™*(—z) = —sinh™'(z). Equation (5.6.8) is of course valid only for z > 1.
Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)—(5.6.8) are sometimes quite essential .
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