
7.4 Generation of Random Bits 287

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x18 + x5 + x2 + x1 + x0 (7.4.1)

which we can abbreviate by just writing the nonzero powers of x, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of order n (=18 above) defines a
recurrence relation for obtaining a new random bit from the n preceding ones. The
recurrence relation is guaranteed to produce a sequence of maximal length, i.e.,
cycle through all possible sequences of n bits (except all zeros) before it repeats.
Therefore one can seed the sequence with any initial bit pattern (except all zeros),
and get 2n − 1 random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throughn (generated
n steps ago), and denoted a1, a2, . . . , an. We want to give a formula for a new bit
a0. After generating a0 we will shift all the bits by one, so that the old an is finally
lost, and the new a0 becomes a1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
register n bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always be an for a primitive polynomial of degree n,
while the last term might or might not be a1, depending on whether the primitive
polynomial has a term in x1.

It is rather cumbersome to illustrate the method in FORTRAN. Assume that iand
is a bitwise AND function, not is bitwise complement, ishft(,1) is leftshift by
one bit, ior is bitwise OR. (These are available in many FORTRAN implementations.)
Then we have the following routine.

288 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18 17 5 4 3 2 1 0
shift left

(a)

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive
polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo
2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b)
Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right.
This method is easiest to implement in software.

FUNCTION irbit1(iseed)
INTEGER irbit1,iseed,IB1,IB2,IB5,IB18
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072) Powers of 2.

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

LOGICAL newbit The accumulated XOR’s.
newbit=iand(iseed,IB18).ne.0 Get bit 18.
if(iand(iseed,IB5).ne.0)newbit=.not.newbit XOR with bit 5.
if(iand(iseed,IB2).ne.0)newbit=.not.newbit XOR with bit 2.
if(iand(iseed,IB1).ne.0)newbit=.not.newbit XOR with bit 1.
irbit1=0
iseed=iand(ishft(iseed,1),not(IB1)) Leftshift the seed and put a zero in its bit 1.
if(newbit)then But if the XOR calculation gave a 1,

irbit1=1
iseed=ior(iseed,IB1) then put that in bit 1 instead.

endif
return
END

“Method II” is less suited to direct hardware implementation (though still
possible), but is more suited to machine-language implementation. It modifies more
than one bit among the saved n bits as each new bit is generated (Figure 7.4.1). It
generates the maximal length sequence, but not in the same order as Method I. The
prescription for the primitive polynomial (7.4.1) is:

a0 = a18

a5 = a5 XOR a0

a2 = a2 XOR a0

a1 = a1 XOR a0

(7.4.3)

7.4 Generation of Random Bits 289

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Some Primitive Polynomials Modulo 2 (after Watson)

(1, 0) (51, 6, 3, 1, 0)
(2, 1, 0) (52, 3, 0)
(3, 1, 0) (53, 6, 2, 1, 0)
(4, 1, 0) (54, 6, 5, 4, 3, 2, 0)
(5, 2, 0) (55, 6, 2, 1, 0)
(6, 1, 0) (56, 7, 4, 2, 0)
(7, 1, 0) (57, 5, 3, 2, 0)
(8, 4, 3, 2, 0) (58, 6, 5, 1, 0)
(9, 4, 0) (59, 6, 5, 4, 3, 1, 0)
(10, 3, 0) (60, 1, 0)
(11, 2, 0) (61, 5, 2, 1, 0)
(12, 6, 4, 1, 0) (62, 6, 5, 3, 0)
(13, 4, 3, 1, 0) (63, 1, 0)
(14, 5, 3, 1, 0) (64, 4, 3, 1, 0)
(15, 1, 0) (65, 4, 3, 1, 0)
(16, 5, 3, 2, 0) (66, 8, 6, 5, 3, 2, 0)
(17, 3, 0) (67, 5, 2, 1, 0)
(18, 5, 2, 1, 0) (68, 7, 5, 1, 0)
(19, 5, 2, 1, 0) (69, 6, 5, 2, 0)
(20, 3, 0) (70, 5, 3, 1, 0)
(21, 2, 0) (71, 5, 3, 1, 0)
(22, 1, 0) (72, 6, 4, 3, 2, 1, 0)
(23, 5, 0) (73, 4, 3, 2, 0)
(24, 4, 3, 1, 0) (74, 7, 4, 3, 0)
(25, 3, 0) (75, 6, 3, 1, 0)
(26, 6, 2, 1, 0) (76, 5, 4, 2, 0)
(27, 5, 2, 1, 0) (77, 6, 5, 2, 0)
(28, 3, 0) (78, 7, 2, 1, 0)
(29, 2, 0) (79, 4, 3, 2, 0)
(30, 6, 4, 1, 0) (80, 7, 5, 3, 2, 1, 0)
(31, 3, 0) (81, 4 0)
(32, 7, 5, 3, 2, 1, 0) (82, 8, 7, 6, 4, 1, 0)
(33, 6, 4, 1, 0) (83, 7, 4, 2, 0)
(34, 7, 6, 5, 2, 1, 0) (84, 8, 7, 5, 3, 1, 0)
(35, 2, 0) (85, 8, 2, 1, 0)
(36, 6, 5, 4, 2, 1, 0) (86, 6, 5, 2, 0)
(37, 5, 4, 3, 2, 1, 0) (87, 7, 5, 1, 0)
(38, 6, 5, 1, 0) (88, 8, 5, 4, 3, 1, 0)
(39, 4, 0) (89, 6, 5, 3, 0)
(40, 5, 4 3, 0) (90, 5, 3, 2, 0)
(41, 3, 0) (91, 7, 6, 5, 3, 2, 0)
(42, 5, 4, 3, 2, 1, 0) (92, 6, 5, 2, 0)
(43, 6, 4, 3, 0) (93, 2, 0)
(44, 6, 5, 2, 0) (94, 6, 5, 1, 0)
(45, 4, 3, 1, 0) (95, 6, 5, 4, 2, 1, 0)
(46, 8, 5, 3, 2, 1, 0) (96, 7, 6, 4, 3, 2, 0)
(47, 5, 0) (97, 6, 0)
(48, 7, 5, 4, 2, 1, 0) (98, 7, 4, 3, 2, 1, 0)
(49, 6, 5, 4, 0) (99, 7, 5, 4, 0)
(50, 4, 3, 2, 0) (100, 8, 7, 2, 0)

In general there will be an exclusive-or for each nonzero term in the primitive
polynomial except 0 and n. The nice feature about Method II is that all the
exclusive-or’s can usually be done as a single masked word XOR (here assumed
to be the FORTRAN function ieor):

290 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))
irbit2=0

endif
return
END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by ±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because 218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table [2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition,we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly

