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FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))
irbit2=0

endif
return
END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by ±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because 218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table [2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition,we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
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32-bit XOR
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g

Figure 7.5.1. The Data Encryption Standard (DES) iterates a nonlinear function g on two 32-bit words,
in the manner shown here (after Meyer and Matyas [4]).

nonlinear bit-mixing function. Figure 7.5.1 shows the flow of information in DES during
this mixing. The function g, which takes 32-bits into 32-bits, is called the “cipher function.”
Meyer and Matyas [4] discuss the importance of the cipher function being nonlinear, as well
as other design criteria.

DES constructs its cipher function g from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. Apparently, this function was chosen
to be particularly strong cryptographically (or conceivably as some critics contend, to have
an exquisitely subtle cryptographic flaw!). For our purposes, a different function g that can
be rapidly computed in a high-level computer language is preferable. Such a function may
weaken the algorithm cryptographically. Our purposes are not, however, cryptographic: We
want to find the fastest g, and smallest number of iterations of the mixing procedure in Figure
7.5.1, such that our output random sequence passes the standard tests that are customarily
applied to random number generators. The resulting algorithm will not be DES, but rather a
kind of “pseudo-DES,” better suited to the purpose at hand.

Following the criterion, mentioned above, that g should be nonlinear, we must give
the integer multiply operation a prominent place in g. Because 64-bit registers are not
generally accessible in high-level languages, we must confine ourselves to multiplying 16-bit
operands into a 32-bit result. So, the general idea of g, almost forced, is to calculate the three
distinct 32-bit products of the high and low 16-bit input half-words, and then to combine
these, and perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or)
into a single 32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation, and tests of the randomness of
the output, lead to the sequence of operations shown in Figure 7.5.2. The few new elements
in the figure need explanation: The values C1 and C2 are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants
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Figure 7.5.2. The nonlinear function g used by the routine psdes.

via exclusive-or ensures that the overall g has no bias towards 0 or 1 bits.
The “reverse half-words” operation in Figure 7.5.2 turns out to be essential; otherwise,

the very lowest and very highest bits are not properly mixed by the three multiplications.
The nonobvious choices in g are therefore: where along the vertical “pipeline” to do the
reverse; in what order to combine the three products and C2; and with which operation (add
or exclusive-or) should each combining be done? We tested these choices exhaustively before
settling on the algorithm shown in the figure.

It remains to determine the smallest number of iterationsNit that we can get away with.
The minimum meaningful Nit is evidently two, since a single iteration simply moves one
32-bit word without altering it. One can use the constants C1 and C2 to help determine an
appropriate Nit: When Nit = 2 and C1 = C2 = 0 (an intentionally very poor choice), the
generator fails several tests of randomness by easily measurable, though not overwhelming,
amounts. When Nit = 4, on the other hand, or with Nit = 2 but with the constants
C1, C2 nonsparse, we have been unable to find any statistical deviation from randomness in
sequences of up to 109 floating numbers ri derived from this scheme. The combined strength
of Nit = 4 and nonsparse C1, C2 should therefore give sequences that are random to tests
even far beyond those that we have actually tried. These are our recommended conservative
parameter values, notwithstanding the fact that Nit = 2 (which is, of course, twice as fast)
has no nonrandomness discernible (by us).

We turn now to implementation. The nonlinear function shown in Figure 7.5.2 is not
implementable in strictly portable FORTRAN, for at least three reasons: (1) The addition of two
32-bit integers may overflow, and the multiplication of two 16-bit integers may not produce
the correct 32-bit product because of sign-bit conventions. We intend that the overflow be
ignored, and that the 16-bit integers be multiplied as if they are positive. It is possible
to force this behavior on most machines. (2) We assume 32-bit integers; however, there



7.5 Random Sequences Based on Data Encryption 293

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is no reason to believe that longer integers would be in any way inferior (with suitable
extensions of the constants C1, C2). (3) Your compiler may require a different notation for
hex constants (see below).

We have been able to run the following routine, psdes, successfullyon machines ranging
from PCs to VAXes and both “big-endian” and “little-endian” UNIX workstations. (Big- and
little-endian refer to the order in which the bytes are stored in a word.) A strictly portable
implementation is possible in C. If all else fails, you can make a FORTRAN-callable version
of the C routine, found in Numerical Recipes in C.

SUBROUTINE psdes(lword,irword)
INTEGER irword,lword,NITER
PARAMETER (NITER=4)

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. NOTE: This routine assumes that arbitrary 32-bit integers can
be added without overflow. To accomplish this, you may need to compile with a special
directive (e.g., /check=nooverflow for VMS). In other languages, such as C, one can
instead type the integers as “unsigned.”

INTEGER i,ia,ib,iswap,itmph,itmpl,c1(4),c2(4)
SAVE c1,c2
DATA c1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’, Your compiler may use a differ-

ent notation for hex constants!* Z’0F33D1B2’/, c2 /Z’4B0F3B58’,Z’E874F0C3’,
* Z’6955C5A6’, Z’55A7CA46’/

do 11 i=1,NITER Perform niter iterations of DES logic, using a simpler (non-
cryptographic) nonlinear function instead of DES’s.iswap=irword

ia=ieor(irword,c1(i)) The bit-rich constants c1 and (below) c2 guarantee lots of
nonlinear mixing.itmpl=iand(ia,65535)

itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
irword=ieor(lword,ieor(c2(i),ia)+itmpl*itmph)
lword=iswap

enddo 11

return
END

The routine ran4, listed below, uses psdes to generate uniform random deviates. We
adopt the convention that a negative value of the argumentidum sets the left 32-bit word, while
a positive value i sets the right 32-bit word, returns the ith random deviate, and increments
idum to i+ 1. This is no more than a convenient way of defining many different sequences
(negative values of idum), but still with random access to each sequence (positive values
of idum). For getting a floating-point number from the 32-bit integer, we like to do it by
the masking trick described at the end of §7.1, above. The hex constants 3F800000 and
007FFFFF are the appropriate ones for computers using the IEEE representation for 32-bit
floating-point numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the
correct hex constants are, respectively, 00004080 and FFFF007F. Note that your compiler
may require a different notation for hex constants, e.g., x’3f800000’, ’3F800000’X, or even
16#3F800000. For greater portability, you can instead construct a floating number by making
the (signed) 32-bit integer nonnegative (typically, you add exactly 231 if it is negative) and
then multiplying it by a floating constant (typically 2.−31).

An interesting, and sometimes useful, feature of the routine ran4, below, is that it allows
random access to the nth random value in a sequence, without the necessity of first generating
values 1 · · ·n− 1. This property is shared by any random number generator based on hashing
(the technique of mapping data keys, which may be highly clustered in value, approximately
uniformly into a storage address space) [5,6]. One might have a simulation problem in which
some certain rare situation becomes recognizable by its consequences only considerably after
it has occurred. One may wish to restart the simulation back at that occurrence, using identical
random values but, say, varying some other control parameters. The relevant question might
then be something like “what random numbers were used in cycle number 337098901?” It
might already be cycle number 395100273 before the question comes up. Random generators
based on recursion, rather than hashing, cannot easily answer such a question.
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Values for Verifying the Implementation of psdes

idum before psdes call after psdes call (hex) ran4(idum)

lword irword lword irword VAX PC

–1 1 1 604D1DCE 509C0C23 0.275898 0.219120

99 1 99 D97F8571 A66CB41A 0.208204 0.849246

–99 99 1 7822309D 64300984 0.034307 0.375290

99 99 99 D7F376F0 59BA89EB 0.838676 0.457334

Successive calls to psdes with arguments−1, 99,−99, and 1, should produce exactly the
lword and irword values shown. Masking conversion to a returned floating random value
is allowed to be machine dependent; values for VAX and PC are shown.

FUNCTION ran4(idum)
INTEGER idum
REAL ran4

C USES psdes
Returns a uniform random deviate in the range 0.0 to 1.0, generated by pseudo-DES (DES-
like) hashing of the 64-bit word (idums,idum), where idumswas set by a previous call with
negative idum. Also increments idum. Routine can be used to generate a random sequence
by successive calls, leaving idum unaltered between calls; or it can randomly access the nth
deviate in a sequence by calling with idum = n. Different sequences are initialized by calls
with differing negative values of idum.

INTEGER idums,irword,itemp,jflmsk,jflone,lword
REAL ftemp
EQUIVALENCE (itemp,ftemp)
SAVE idums,jflone,jflmsk
DATA idums /0/, jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/

The hexadecimal constants jflone and jflmsk are used to produce a floating number between
1. and 2. by bitwise masking. They are machine-dependent. See text.

if(idum.lt.0)then Reset idums and prepare to return the first devi-
ate in its sequence.idums=-idum

idum=1
endif
irword=idum
lword=idums
call psdes(lword,irword) “Pseudo-DES” encode the words.
itemp=ior(jflone,iand(jflmsk,irword)) Mask to a floating number between 1 and 2.
ran4=ftemp-1.0 Subtraction moves range to 0. to 1.
idum=idum+1
return
END

The accompanying table gives data for verifying that ran4 and psdes work correctly
on your machine. We do not advise the use of ran4 unless you are able to reproduce the
hex values shown. Typically, ran4 is about 4 times slower than ran0 (§7.1), or about 3
times slower than ran1.

CITED REFERENCES AND FURTHER READING:

Data Encryption Standard, 1977 January 15, Federal Information Processing Standards Publi-
cation, number 46 (Washington: U.S. Department of Commerce, National Bureau of Stan-
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Information Processing Standards Publication, number 74 (Washington: U.S. Department
of Commerce, National Bureau of Standards). [2]
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7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in §10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pick N random points, uniformly distributed in a multidimen-
sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

∫
f dV ≈ V 〈f〉 ± V

√
〈f2〉 − 〈f〉2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

〈f〉 ≡ 1

N

N∑
i=1

f(xi)
〈
f2
〉
≡ 1

N

N∑
i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error
is distributed as a Gaussian, so the error term should be taken only as a rough
indication of probable error.

Suppose that you want to integrate a function g over a region W that is not
easy to sample randomly. For example, W might have a very complicated shape.
No problem. Just find a region V that includes W and that can easily be sampled
(Figure 7.6.1), and then define f to be equal to g for points in W and equal to zero
for points outside of W (but still inside the sampled V ). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an


