10

8.1 Straight Insertion and Shell's Method 321

For small N one does better to use an agorithm whose operation count goes
as a higher, i.e., poorer, power of N, if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N2 agorithm, whose potential for
misuse (by using it for too large an N) is great. The resultant waste of computer
time is so avesome, that we were tempted not to include any N2 routine at all. We
will draw the ling, however, at the inefficient N2 algorithm, beloved of e ementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’smethod (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. Thismethod goesas N3/2 intheworst case, butisusually faster.

See references(1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8-13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N? routine, and should be used only for small N,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to thefirst; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

SUBROUTINE piksrt(n,arr)

INTEGER n

REAL arr(n)
Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER i, j

REAL a

do 12 j=2,n Pick out each element in turn.
a=arr(j)
dou i=j-1,1,-1 Look for the place to insert it.

if (arr(i).le.a)goto 10
arr (i+1)=arr (i)
enddo 11
i=0
arr(i+1)=a Insert it.
enddo 12
return
END

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an e ement of arr:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

10

322 Chapter 8. Sorting

SUBROUTINE piksr2(n,arr,brr)
INTEGER n
REAL arr(n),brr(n)
Sorts an array arr (1:n) into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr(1:n).
INTEGER 1i,j
REAL a,b
do12 j=2,n Pick out each element in turn.
a=arr(j)
b=brr(j)
dou i=j-1,1,-1 Look for the place to insert it.
if (arr(i).le.a)goto 10
arr(i+1)=arr(i)
brr(i+1)=brr(i)
enddo 11
i=0
arr(i+l)=a Insert it.
brr(i+1)=b
enddo 12
return
END

For the case of rearranging a larger number of arrays by sorting on one of
them, see §8.4.

Shell’s Method

Thisisactually avariant on straight insertion, but avery powerful variant indeed.
Theroughidea, eg., for the case of sorting 16 numbersn; .. .nqg, isthis: First sort,
by straight insertion, each of the 8 groups of 2 (n1,n9), (n2, n10), - .., (ng, N1g)-
Next, sort each of the 4 groups of 4 (n1, ns, ng, n13), - . ., (N4, ng, n12,n16). Next
sort the 2 groups of 8 records, beginning with (n1, ns, ns, n7, ng, n11, n13, N15).
Finaly, sort the whole list of 16 numbers.

Of course, only thelast sort is necessary for putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their fina
resting places. Therefore, the straight insertion passes on thefinal sort rarely haveto
go past more than a“few” elements before finding theright place. (Think of sorting
a hand of cards that are already amost in order.)

The spacings between the numbers sorted on each pass throughthe data (8,4,2,1
in the above example) are called the increments, and a Shell sort is sometimes
called a diminishing increment sort. There has been a lot of research into how to
choose a good set of increments, but the optimum choice is not known. The set
..., 8,4,2, 1isin fact not a good choice, especialy for N a power of 2. A much
better choice is the sequence

(3% —1)/2,...,40,13,4,1 (8.1.1)
which can be generated by the recurrence
i1 =1, g1 =3 +1, k=12, ... (812)

It can be shown (see [1]) that for thisseguence of incrementsthe number of operations
required in al is of order N'3/2 for the worst possible ordering of the original data.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

8.2 Quicksort 323

For “randomly” ordered data, the operations count goes approximately as N!'-2°, at
least for N < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

SUBROUTINE shell(n,a)

INTEGER n

REAL a(n)
Sorts an array a(1:n) into ascending numerical order by Shell's method (diminishing in-
crement sort). n is input; a is replaced on output by its sorted rearrangement.

INTEGER i,j,inc

REAL v

inc=1 Determine the starting increment.

inc=3*inc+1

if (inc.le.n)goto 1

continue Loop over the partial sorts.
inc=inc/3
dou i=inc+1l,n Outer loop of straight insertion.
v=a(i)
j=i

if (a(j-inc) .gt.v)then
a(j)=a(j-inc)
j=j-inc
if(j.le.inc)goto 4
goto 3
endif
a(j)=v
enddo 11
if (inc.gt.1)goto 2
return
END

Inner loop of straight insertion.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for large N, the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element” a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At theend of around of partitioning,
thedement a isinitsfina placein the array. All elementsin the left subarray are
< a, while al elements in the right subarray are > a. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning element a. Scan a pointer up the array until you find
an element > a, and then scan another pointer down from the end of the array
until you find an element < a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

