
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B10. Minimization or
Maximization of Functions

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: GOLD=1.618034_sp,GLIMIT=100.0_sp,TINY=1.0e-20_sp

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL(SP) :: fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if (fb > fa) then Switch roles of a and b so that we

can go downhill in the direction
from a to b.

call swap(ax,bx)
call swap(fa,fb)

end if
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)
do Do-while-loop: Keep returning here

until we bracket.if (fb < fc) RETURN
Compute u by parabolic extrapolation from a, b, c. TINY is used to prevent any possible
division by zero.

r=(bx-ax)*(fb-fc)
q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.0_sp*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx)

We won’t go farther than this. Test various possibilities:
if ((bx-u)*(u-cx) > 0.0) then Parabolic u is between b and c: try

it.fu=func(u)
if (fu < fc) then Got a minimum between b and c.

ax=bx
fa=fb
bx=u
fb=fu
RETURN

else if (fu > fb) then Got a minimum between a and u.
cx=u
fc=fu
RETURN

1201

1202 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default

magnification.fu=func(u)
else if ((cx-u)*(u-ulim) > 0.0) then Parabolic fit is between c and its al-

lowed limit.fu=func(u)
if (fu < fc) then

bx=cx
cx=u
u=cx+GOLD*(cx-bx)
call shft(fb,fc,fu,func(u))

end if
else if ((u-ulim)*(ulim-cx) >= 0.0) then Limit parabolic u to maximum al-

lowed value.u=ulim
fu=func(u)

else Reject parabolic u, use default mag-
nification.u=cx+GOLD*(cx-bx)

fu=func(u)
end if
call shft(ax,bx,cx,u)
call shft(fa,fb,fc,fu) Eliminate oldest point and continue.

end do
CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END SUBROUTINE mnbrak

f90
call shft... There are three places inmnbrak where we need to shift
four variables around. Rather than repeat code, we makeshft an internal
subroutine, coming after aCONTAINS statement. It is invisible to all

procedures exceptmnbrak.

� � �

FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: R=0.61803399_sp,C=1.0_sp-R

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that
bx is between ax and cx, and func(bx) is less than both func(ax) and func(cx)),
this routine performs a golden section search for the minimum, isolating it to a fractional
precision of about tol. The abscissa of the minimum is returned as xmin, and the minimum

Chapter B10. Minimization or Maximization of Functions 1203

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

function value is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL(SP) :: f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of

four points, x0,x1,x2,x3.x3=cx
if (abs(cx-bx) > abs(bx-ax)) then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

end if
f1=func(x1)
f2=func(x2)

The initial function evaluations. Note that we never need to evaluate the function at the
original endpoints.

do Do-while-loop: We keep returning here.
if (abs(x3-x0) <= tol*(abs(x1)+abs(x2))) exit
if (f2 < f1) then One possible outcome,

call shft3(x0,x1,x2,R*x2+C*x3) its housekeeping,
call shft2(f1,f2,func(x2)) and a new function evaluation.

else The other outcome,
call shft3(x3,x2,x1,R*x1+C*x0)
call shft2(f2,f1,func(x1)) and its new function evaluation.

end if
end do Back to see if we are done.
if (f1 < f2) then We are done. Output the best of the two

current values.golden=f1
xmin=x1

else
golden=f2
xmin=x2

end if
CONTAINS

SUBROUTINE shft2(a,b,c)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b
REAL(SP), INTENT(IN) :: c
a=b
b=c
END SUBROUTINE shft2

SUBROUTINE shft3(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft3
END FUNCTION golden

f90
call shft3...call shft2... See discussion ofshft for mnbrak on
p. 1202.

� � �

1204 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: CGOLD=0.3819660_sp,ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that bx
is between ax and cx, and func(bx) is less than both func(ax) and func(cx)), this
routine isolates the minimum to a fractional precision of about tol using Brent’s method.
The abscissa of the minimum is returned as xmin, and the minimum function value is
returned as brent, the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though

the input abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0.0 This will be the distance moved on the step

before last.fx=func(x)
fv=fx
fw=fx
do iter=1,ITMAX Main program loop.

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) then Test for done here.

xmin=x Arrive here ready to exit with best values.
brent=fx
RETURN

end if
if (abs(e) > tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.0_sp*(q-r)
if (q > 0.0) p=-p
q=abs(q)
etemp=e
e=d
if (abs(p) >= abs(0.5_sp*q*etemp) .or. &

p <= q*(a-x) .or. p >= q*(b-x)) then
The above conditions determine the acceptability of the parabolic fit. Here it is
not o.k., so we take the golden section step into the larger of the two segments.

e=merge(a-x,b-x, x >= xm)
d=CGOLD*e

else Take the parabolic step.
d=p/q
u=x+d
if (u-a < tol2 .or. b-u < tol2) d=sign(tol1,xm-x)

end if

Chapter B10. Minimization or Maximization of Functions 1205

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else Take the golden section step into the larger
of the two segments.e=merge(a-x,b-x, x >= xm)

d=CGOLD*e
end if
u=merge(x+d,x+sign(tol1,d), abs(d) >= tol1)

Arrive here with d computed either from parabolic fit, or else from golden section.
fu=func(u)

This is the one function evaluation per iteration.
if (fu <= fx) then Now we have to decide what to do with our

function evaluation. Housekeeping follows:if (u >= x) then
a=x

else
b=x

end if
call shft(v,w,x,u)
call shft(fv,fw,fx,fu)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

v=w
fv=fw
w=u
fw=fu

else if (fu <= fv .or. v == x .or. v == w) then
v=u
fv=fu

end if
end if

end do Done with housekeeping. Back for another
iteration.call nrerror(’brent: exceed maximum iterations’)

CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END FUNCTION brent

� � �

FUNCTION dbrent(ax,bx,cx,func,dfunc,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(x)

1206 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func and its derivative function dfunc, and given a bracketing triplet of
abscissas ax, bx, cx [such that bx is between ax and cx, and func(bx) is less than both
func(ax) and func(cx)], this routine isolates the minimum to a fractional precision of
about tol using a modification of Brent’s method that uses derivatives. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as dbrent,
the returned function value.
Parameters: Maximum allowed number of iterations, and a small number that protects
against trying to achieve fractional accuracy for a minimum that happens to be exactly
zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,&

u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL :: ok1,ok2 Will be used as flags for whether pro-
posed steps are acceptable or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.0
fx=func(x)
fv=fx
fw=fx
dx=dfunc(x) All our housekeeping chores are dou-

bled by the necessity of moving
derivative values around as well
as function values.

dv=dx
dw=dx
do iter=1,ITMAX

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) exit
if (abs(e) > tol1) then

d1=2.0_sp*(b-a) Initialize these d’s to an out-of-bracket
value.d2=d1

if (dw /= dx) d1=(w-x)*dx/(dx-dw) Secant method with each point.
if (dv /= dx) d2=(v-x)*dx/(dx-dv)

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b) > 0.0) .and. (dx*d1 <= 0.0)
ok2=((a-u2)*(u2-b) > 0.0) .and. (dx*d2 <= 0.0)
olde=e Movement on the step before last.
e=d
if (ok1 .or. ok2) then Take only an acceptable d, and if

both are acceptable, then take
the smallest one.

if (ok1 .and. ok2) then
d=merge(d1,d2, abs(d1) < abs(d2))

else
d=merge(d1,d2,ok1)

end if
if (abs(d) <= abs(0.5_sp*olde)) then

u=x+d
if (u-a < tol2 .or. b-u < tol2) &

d=sign(tol1,xm-x)
else

Chapter B10. Minimization or Maximization of Functions 1207

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

e=merge(a,b, dx >= 0.0)-x
Decide which segment by the sign of the derivative.

d=0.5_sp*e Bisect, not golden section.
end if

else
e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
else

e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
if (abs(d) >= tol1) then

u=x+d
fu=func(u)

else
u=x+sign(tol1,d)
fu=func(u) If the minimum step in the downhill

direction takes us uphill, then we
are done.

if (fu > fx) exit
end if
du=dfunc(u) Now all the housekeeping, sigh.
if (fu <= fx) then

if (u >= x) then
a=x

else
b=x

end if
call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,x,fx,dx)
call mov3(x,fx,dx,u,fu,du)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,u,fu,du)

else if (fu <= fv .or. v == x .or. v == w) then
call mov3(v,fv,dv,u,fu,du)

end if
end if

end do
if (iter > ITMAX) call nrerror(’dbrent: exceeded maximum iterations’)
xmin=x
dbrent=fx
CONTAINS

SUBROUTINE mov3(a,b,c,d,e,f)
REAL(SP), INTENT(IN) :: d,e,f
REAL(SP), INTENT(OUT) :: a,b,c
a=d
b=e
c=f
END SUBROUTINE mov3
END FUNCTION dbrent

� � �

1208 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=5000
REAL(SP), PARAMETER :: TINY=1.0e-10

Minimization of the function func in N dimensions by the downhill simplex method of
Nelder and Mead. The (N + 1) ×N matrix p is input. Its N + 1 rows are N -dimensional
vectors that are the vertices of the starting simplex. Also input is the vector y of length
N + 1, whose components must be preinitialized to the values of func evaluated at the
N + 1 vertices (rows) of p; and ftol the fractional convergence tolerance to be achieved
in the function value (n.b.!). On output, p and y will have been reset to N + 1 new points
all within ftol of a minimum function value, and iter gives the number of function
evaluations taken.
Parameters: The maximum allowed number of function evaluations, and a small number.

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP), DIMENSION(size(p,2)) :: psum
call amoeba_private
CONTAINS

SUBROUTINE amoeba_private
IMPLICIT NONE
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ysave,ytry,ytmp
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,’amoeba’)
iter=0
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

ilo=iminloc(y(:)) Determine which point is the highest (worst),
next-highest, and lowest (best).ihi=imaxloc(y(:))

ytmp=y(ihi)
y(ihi)=y(ilo)
inhi=imaxloc(y(:))
y(ihi)=ytmp
rtol=2.0_sp*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) then If returning, put best point and value in slot

1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
if (iter >= ITMAX) call nrerror(’ITMAX exceeded in amoeba’)

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(-1.0_sp)
iter=iter+1
if (ytry <= y(ilo)) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotry(2.0_sp)
iter=iter+1

else if (ytry >= y(inhi)) then The reflected point is worse than the sec-
ond highest, so look for an intermediate
lower point, i.e., do a one-dimensional
contraction.

ysave=y(ihi)
ytry=amotry(0.5_sp)
iter=iter+1

Chapter B10. Minimization or Maximization of Functions 1209

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (ytry >= ysave) then
Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter+ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do Go back for the test of doneness and the next
iteration.END SUBROUTINE amoeba_private

FUNCTION amotry(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotry

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,ytry
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry) Evaluate the function at the trial point.
if (ytry < y(ihi)) then If it’s better than the highest, then replace

the highest.y(ihi)=ytry
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotry=ytry
END FUNCTION amotry
END SUBROUTINE amoeba

f90
The only action taken by the subroutineamoeba is to call the internal
subroutineamoeba private. Why this structure? The reason has to do
with meeting the twin goals of data hiding (especially for “safe” scope

of variables) and program readability. The situation is this: Logically,amoeba does
most of the calculating, but calls an internal subroutineamotry at several different
points, with several values of the parameterfac. However,fac is not the only
piece of data that must be shared withamotry; the latter also needs access to several
shared variables (ihi, ndim, psum) and arguments ofamoeba (p, y, func).

The obvious (but not best) way of coding this would be to put the computational
guts inamoeba, with amotry as the sole internal subprogram. Assuming thatfac

is passed as an argument toamotry (it being the parameter that is being rapidly
altered), one must decide whether to pass all the other quantities toamotry (i) as
additional arguments (as is done in the Fortran 77 version), or (ii) “automatically,”
i.e., doing nothing except using the fact that an internal subprogram has automatic
access to all of its host’s entities. Each of these choices has strong disadvantages.
Choice (i) is inefficient (all those arguments) and also obscures the fact thatfac is
the primary changing argument. Choice (ii) makes the program extremely difficult to
read, because it wouldn’t be obvious withoutcareful cross-comparison of the routines
which variables inamoeba are actually global variables that are used byamotry.

Choice (ii) is also “unsafe scoping” because it gives a nontrivially complicated
internal subprogram,amotry, access to all the variables in its host. A common
and difficult-to-find bug is the accidental alteration of a variable that one “thought”

1210 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

was local, but is actually shared. (Simple variables likei, j, andn are the most
common culprits.)

We are therefore led to reject both choice (i) and choice (ii) in favor of a structure
previously described in the subsection on Scope, Visibility, and Data Hiding in§21.5.
The guts ofamoeba are put inamoeba private, a sister routine to amotry. These
two siblings have mutually private name spaces. However, any variables that they
need to share (including the top-level arguments ofamoeba) are declared as variables
in the enclosingamoeba routine. The presence of these “global variables” serves as
a warning flag to the reader that data are shared between routines.

An alternative attractive way of coding the above situation would be to use
a module containingamoeba andamotry. Everything would be declared private
except the nameamoeba. The global variables would be at the top level, and
the arguments ofamoeba that need to be passed toamotry would be handled by
pointers among the global variables. Unfortunately, Fortran 90 does not support
pointers to functions. Sigh!

ilo=iminloc...ihi=imaxloc... See discussion of these functions on p. 1017.

call swap(y(1)...call swap(p(1,:)... Here theswap routine innrutil is
called once with a scalar argument and once with a vector argument. Insidenrutil

scalar and vector versions have been overloaded onto the single nameswap, hiding
all the implementation details from the calling routine.

� � �

SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: TINY=1.0e-25_sp

Minimization of a function func of N variables. (func is not an argument, it is a fixed
function name.) Input consists of an initial starting point p, a vector of length N ; an
initial N × N matrix xi whose columns contain the initial set of directions (usually the N
unit vectors); and ftol, the fractional tolerance in the function value such that failure to
decrease by more than this amount on one iteration signals doneness. On output, p is set
to the best point found, xi is the then-current direction set, fret is the returned function
value at p, and iter is the number of iterations taken. The routine linmin is used.
Parameters: Maximum allowed iterations, and a small number.

INTEGER(I4B) :: i,ibig,n
REAL(SP) :: del,fp,fptt,t
REAL(SP), DIMENSION(size(p)) :: pt,ptt,xit
n=assert_eq(size(p),size(xi,1),size(xi,2),’powell’)
fret=func(p)

Chapter B10. Minimization or Maximization of Functions 1211

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

pt(:)=p(:) Save the initial point.
iter=0
do

iter=iter+1
fp=fret
ibig=0
del=0.0 Will be the biggest function decrease.
do i=1,n Loop over all directions in the set.

xit(:)=xi(:,i) Copy the direction,
fptt=fret
call linmin(p,xit,fret) minimize along it,
if (fptt-fret > del) then and record it if it is the largest decrease so

far.del=fptt-fret
ibig=i

end if
end do
if (2.0_sp*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) RETURN

Termination criterion.
if (iter == ITMAX) call &

nrerror(’powell exceeding maximum iterations’)
ptt(:)=2.0_sp*p(:)-pt(:) Construct the extrapolated point and the av-

erage direction moved. Save the old start-
ing point.

xit(:)=p(:)-pt(:)
pt(:)=p(:)
fptt=func(ptt) Function value at extrapolated point.
if (fptt >= fp) cycle One reason not to use new direction.
t=2.0_sp*(fp-2.0_sp*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if (t >= 0.0) cycle Other reason not to use new direction.
call linmin(p,xit,fret) Move to minimum of the new direction,
xi(:,ibig)=xi(:,n) and save the new direction.
xi(:,n)=xit(:)

end do Back for another iteration.
END SUBROUTINE powell

� � �

MODULE f1dim_mod Used for communication from linmin to f1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by linmin as the one-dimensional function passed to mnbrak and brent.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim
END MODULE f1dim_mod

1212 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE linmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,brent
USE f1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and brent.
Parameter: Tolerance passed to brent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’linmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE linmin

f90
USE f1dim_mod At first sight this situation is like the one involving
USE fminln in newt on p. 1197: We want to pass arraysp and xi

from linmin to f1dim without having them be arguments off1dim. If
you recall the discussion in§21.5 and on p. 1197, there are two ways of effecting
this: via pointers or via allocatable arrays. There is an important difference here,
however. The arraysp andxi are themselves arguments oflinmin, and so cannot
be allocatable arrays in the module. If we did want to use allocatable arrays in the
module, we would have to copyp andxi into them. The pointer implementation
is much more elegant, since no unnecessary copying is required. The construction
here is identical to the one infminln andnewt, except thatp andxi are arguments
instead of automatic arrays.

� � �

MODULE df1dim_mod Used for communication from dlinmin to f1dim and df1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by dlinmin as the one-dimensional function passed to mnbrak.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt

Chapter B10. Minimization or Maximization of Functions 1213

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim

FUNCTION df1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: df1dim

Used by dlinmin as the one-dimensional function passed to dbrent.
INTERFACE

FUNCTION dfunc(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dfunc
END FUNCTION dfunc

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt,df
allocate(xt(ncom),df(ncom))
xt(:)=pcom(:)+x*xicom(:)
df(:)=dfunc(xt)
df1dim=dot_product(df,xicom)
deallocate(xt,df)
END FUNCTION df1dim
END MODULE df1dim_mod

SUBROUTINE dlinmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,dbrent
USE df1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and dbrent. dfunc is a fixed-name user-
supplied function that computes the gradient of func.
Parameter: Tolerance passed to dbrent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’dlinmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE dlinmin

f90 USE df1dim_mod See discussion ofUSE f1dim mod on p. 1212.

� � �

1214 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: EPS=1.0e-10_sp

Given a starting point p that is a vector of length N , Fletcher-Reeves-Polak-Ribiere min-
imization is performed on a function func, using its gradient as calculated by a routine
dfunc. The convergence tolerance on the function value is input as ftol. Returned quan-
tities are p (the location of the minimum), iter (the number of iterations that were
performed), and fret (the minimum value of the function). The routine linmin is called
to perform line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is a small number
to rectify the special case of converging to exactly zero function value.

INTEGER(I4B) :: its
REAL(SP) :: dgg,fp,gam,gg
REAL(SP), DIMENSION(size(p)) :: g,h,xi
fp=func(p) Initializations.
xi=dfunc(p)
g=-xi
h=g
xi=h
do its=1,ITMAX Loop over iterations.

iter=its
call linmin(p,xi,fret) Next statement is the normal return:
if (2.0_sp*abs(fret-fp) <= ftol*(abs(fret)+abs(fp)+EPS)) RETURN
fp=fret
xi=dfunc(p)
gg=dot_product(g,g)

! dgg=dot_product(xi,xi) This statement for Fletcher-Reeves.
dgg=dot_product(xi+g,xi) This statement for Polak-Ribiere.
if (gg == 0.0) RETURN Unlikely. If gradient is exactly zero then we are al-

ready done.gam=dgg/gg
g=-xi
h=g+gam*h
xi=h

end do
call nrerror(’frprmn: maximum iterations exceeded’)
END SUBROUTINE frprmn

� � �

Chapter B10. Minimization or Maximization of Functions 1215

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype; USE nrutil, ONLY : nrerror,outerprod,unit_matrix,vabs
USE nr, ONLY : lnsrch
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: STPMX=100.0_sp,EPS=epsilon(p),TOLX=4.0_sp*EPS

Given a starting point p that is a vector of length N , the Broyden-Fletcher-Goldfarb-Shanno
variant of Davidon-Fletcher-Powell minimization is performed on a function func, using its
gradient as calculated by a routine dfunc. The convergence requirement on zeroing the
gradient is input as gtol. Returned quantities are p (the location of the minimum), iter
(the number of iterations that were performed), and fret (the minimum value of the
function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; STPMX is the scaled
maximum step length allowed in line searches; EPS is the machine precision; TOLX is the
convergence criterion on x values.

INTEGER(I4B) :: its
LOGICAL :: check
REAL(SP) :: den,fac,fad,fae,fp,stpmax,sumdg,sumxi
REAL(SP), DIMENSION(size(p)) :: dg,g,hdg,pnew,xi
REAL(SP), DIMENSION(size(p),size(p)) :: hessin
fp=func(p) Calculate starting function value and gradi-

ent.g=dfunc(p)
call unit_matrix(hessin) Initialize inverse Hessian to the unit matrix.
xi=-g Initial line direction.
stpmax=STPMX*max(vabs(p),real(size(p),sp))
do its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(p,fp,g,xi,pnew,fret,stpmax,check,func)

The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
xi=pnew-p Update the line direction,
p=pnew and the current point.
if (maxval(abs(xi)/max(abs(p),1.0_sp)) < TOLX) RETURN

Test for convergence on ∆x.
dg=g Save the old gradient,
g=dfunc(p) and get the new gradient.
den=max(fret,1.0_sp)
if (maxval(abs(g)*max(abs(p),1.0_sp)/den) < gtol) RETURN

Test for convergence on zero gradient.
dg=g-dg Compute difference of gradients,
hdg=matmul(hessin,dg) and difference times current matrix.
fac=dot_product(dg,xi) Calculate dot products for the denominators.
fae=dot_product(dg,hdg)
sumdg=dot_product(dg,dg)

1216 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sumxi=dot_product(xi,xi)
if (fac > sqrt(EPS*sumdg*sumxi)) then Skip update if fac not sufficiently

positive.fac=1.0_sp/fac
fad=1.0_sp/fae
dg=fac*xi-fad*hdg Vector that makes BFGS different from DFP.
hessin=hessin+fac*outerprod(xi,xi)-& The BFGS updating formula.

fad*outerprod(hdg,hdg)+fae*outerprod(dg,dg)
end if
xi=-matmul(hessin,g) Now calculate the next direction to go,

end do and go back for another iteration.
call nrerror(’dfpmin: too many iterations’)
END SUBROUTINE dfpmin

f90
call unit_matrix(hessin) The unit matrix routine in nrutil does
exactly what its name suggests. The routinedfpmin makes use of
outerprod from nrutil, as well as the matrix intrinsicsmatmul and

dot product, to simplify and parallelize the coding.

� � �

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,ifirstloc,imaxloc,&

nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Simplex method for linear programming. Input parameters a, m1, m2, and m3, and output
parameters a, icase, izrov, and iposv are described above the routine in Vol. 1. Dimen-
sions are (M + 2) × (N + 1) for a, M for iposv, N for izrov, with m1+ m2+ m3 = M .
Parameter: EPS is the absolute precision, which should be adjusted to the scale of your
variables.

INTEGER(I4B) :: ip,k,kh,kp,nl1,m,n
INTEGER(I4B), DIMENSION(size(a,2)) :: l1
INTEGER(I4B), DIMENSION(m2) :: l3
REAL(SP) :: bmax
LOGICAL(LGT) :: init
m=assert_eq(size(a,1)-2,size(iposv),’simplx: m’)
n=assert_eq(size(a,2)-1,size(izrov),’simplx: n’)
if (m /= m1+m2+m3) call nrerror(’simplx: bad input constraint counts’)
if (any(a(2:m+1,1) < 0.0)) call nrerror(’bad input tableau in simplx’)

Constants bi must be nonnegative.
nl1=n
l1(1:n)=arth(1,1,n)

Initialize index list of columns admissible for exchange.
izrov(:)=l1(1:n) Initially make all variables right-hand.
iposv(:)=n+arth(1,1,m)

Initial left-hand variables. m1 type constraints are represented by having their slack variable
initially left-hand, with no artificial variable. m2 type constraints have their slack variable
initially left-hand, with a minus sign, and their artificial variable handled implicitly during
their first exchange. m3 type constraints have their artificial variable initially left-hand.

init=.true.
phase1: do

if (init) then Initial pass only.
if (m2+m3 == 0) exit phase1 Origin is a feasible solution. Go to phase two.
init=.false.
l3(1:m2)=1

Initialize list of m2 constraints whose slack variables have never been exchanged out
of the initial basis.

a(m+2,1:n+1)=-sum(a(m1+2:m+1,1:n+1),dim=1) Compute the auxiliary objec-
tive function.end if

Chapter B10. Minimization or Maximization of Functions 1217

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (nl1 > 0) then
kp=l1(imaxloc(a(m+2,l1(1:nl1)+1))) Find the maximum coefficient of the

auxiliary objective function.bmax=a(m+2,kp+1)
else

bmax=0.0
end if
phase1a: do

if (bmax <= EPS .and. a(m+2,1) < -EPS) then
Auxiliary objective function is still negative and can’t be improved, hence no
feasible solution exists.

icase=-1
RETURN

else if (bmax <= EPS .and. a(m+2,1) <= EPS) then
Auxiliary objective function is zero and can’t be improved. This signals that we
have a feasible starting vector. Clean out the artificial variables corresponding
to any remaining equality constraints and then eventually exit phase one.

do ip=m1+m2+1,m
if (iposv(ip) == ip+n) then Found an artificial variable for an equal-

ity constraint.if (nl1 > 0) then
kp=l1(imaxloc(abs(a(ip+1,l1(1:nl1)+1))))
bmax=a(ip+1,kp+1)

else
bmax=0.0

end if
if (bmax > EPS) exit phase1a Exchange with column correspond-

ing to maximum pivot ele-
ment in row.

end if
end do
where (spread(l3(1:m2),2,n+1) == 1) &

a(m1+2:m1+m2+1,1:n+1)=-a(m1+2:m1+m2+1,1:n+1)
Change sign of row for any m2 constraints still present from the initial basis.

exit phase1 Go to phase two.
end if
call simp1 Locate a pivot element (phase one).
if (ip == 0) then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
RETURN

end if
exit phase1a

end do phase1a
call simp2(m+1,n) Exchange a left- and a right-hand variable.
if (iposv(ip) >= n+m1+m2+1) then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

k=ifirstloc(l1(1:nl1) == kp)
nl1=nl1-1
l1(k:nl1)=l1(k+1:nl1+1)

else
kh=iposv(ip)-m1-n
if (kh >= 1) then Exchanged out an m2 type constraint.

if (l3(kh) /= 0) then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit

artificial variable.
l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.0_sp
a(1:m+2,kp+1)=-a(1:m+2,kp+1)

end if
end if

end if
call swap(izrov(kp),iposv(ip)) Update lists of left- and right-hand variables.

end do phase1 If still in phase one, go back again.
phase2: do

We have an initial feasible solution. Now optimize it.
if (nl1 > 0) then

kp=l1(imaxloc(a(1,l1(1:nl1)+1))) Test the z-row for doneness.
bmax=a(1,kp+1)

else
bmax=0.0

end if

1218 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (bmax <= EPS) then Done. Solution found. Return with the good
news.icase=0

RETURN
end if
call simp1 Locate a pivot element (phase two).
if (ip == 0) then Objective function is unbounded. Report and

return.icase=1
RETURN

end if
call simp2(m,n) Exchange a left- and a right-hand variable,
call swap(izrov(kp),iposv(ip)) update lists of left- and right-hand variables,

end do phase2 and return for another iteration.
CONTAINS

SUBROUTINE simp1
Locate a pivot element, taking degeneracy into account.

IMPLICIT NONE
INTEGER(I4B) :: i,k
REAL(SP) :: q,q0,q1,qp
ip=0
i=ifirstloc(a(2:m+1,kp+1) < -EPS)
if (i > m) RETURN No possible pivots. Return with message.
q1=-a(i+1,1)/a(i+1,kp+1)
ip=i
do i=ip+1,m

if (a(i+1,kp+1) < -EPS) then
q=-a(i+1,1)/a(i+1,kp+1)
if (q < q1) then

ip=i
q1=q

else if (q == q1) then We have a degeneracy.
do k=1,n

qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if (q0 /= qp) exit

end do
if (q0 < qp) ip=i

end if
end if

end do
END SUBROUTINE simp1

SUBROUTINE simp2(i1,k1)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: i1,k1

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER(I4B) :: ip1,kp1
REAL(SP) :: piv
INTEGER(I4B), DIMENSION(k1) :: icol
INTEGER(I4B), DIMENSION(i1) :: irow
INTEGER(I4B), DIMENSION(max(i1,k1)+1) :: itmp
ip1=ip+1
kp1=kp+1
piv=1.0_sp/a(ip1,kp1)
itmp(1:k1+1)=arth(1,1,k1+1)
icol=pack(itmp(1:k1+1),itmp(1:k1+1) /= kp1)
itmp(1:i1+1)=arth(1,1,i1+1)
irow=pack(itmp(1:i1+1),itmp(1:i1+1) /= ip1)
a(irow,kp1)=a(irow,kp1)*piv
a(irow,icol)=a(irow,icol)-outerprod(a(irow,kp1),a(ip1,icol))
a(ip1,icol)=-a(ip1,icol)*piv
a(ip1,kp1)=piv
END SUBROUTINE simp2
END SUBROUTINE simplx

Chapter B10. Minimization or Maximization of Functions 1219

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
main_procedure: do The routinesimplx makes extensive use of named
do-loops to control the program flow. The variousexit statements have
the names of the do-loops attached to them so we can easily tell where

control is being transferred to. We believe that it is almost never necessary to use
goto statements: Code will always be clearer with well-constructed block structures.

phase1a: do...end do phase1a This is not a real do-loop: It is executed only
once, as you can see from the unconditionalexit before theend do. We use this
construction to define a block of code that is traversed once but that has several
possible exit points.

where (spread(l3(1:m12-m1),2,n+1) == 1) &

a(m1+2:m12+1,1:n+1)=-a(m1+2:m12+1,1:n+1)

These lines are equivalent to

do i=m1+1,m12
if (l3(i-m1) == 1) a(i+1,1:n+1)=-a(i+1,1:n+1)

end do

� � �

SUBROUTINE anneal(x,y,iorder)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y

This algorithm finds the shortest round-trip path to N cities whose coordinates are in the
length N arrays x, y. The length N array iorder specifies the order in which the cities are
visited. On input, the elements of iorder may be set to any permutation of the numbers
1 . . . N . This routine will return the best alternative path it can find.

INTEGER(I4B), DIMENSION(6) :: n
INTEGER(I4B) :: i1,i2,j,k,nlimit,ncity,nn,nover,nsucc
REAL(SP) :: de,harvest,path,t,tfactr
LOGICAL(LGT) :: ans
ncity=assert_eq(size(x),size(y),size(iorder),’anneal’)
nover=100*ncity Maximum number of paths tried at any temperature,
nlimit=10*ncity and of successful path changes before continuing.
tfactr=0.9_sp Annealing schedule: t is reduced by this factor on

each step.t=0.5_sp
path=sum(alen_v(x(iorder(1:ncity-1)),x(iorder(2:ncity)),&

y(iorder(1:ncity-1)),y(iorder(2:ncity)))) Calculate initial path length.
i1=iorder(ncity) Close the loop by tying path ends to-

gether.i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
do j=1,100 Try up to 100 temperature steps.

nsucc=0
do k=1,nover

do
call ran1(harvest)
n(1)=1+int(ncity*harvest) Choose beginning of segment . . .
call ran1(harvest)
n(2)=1+int((ncity-1)*harvest) . . . and end of segment.
if (n(2) >= n(1)) n(2)=n(2)+1
nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on

the segment.if (nn >= 3) exit
end do

1220 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call ran1(harvest)
Decide whether to do a reversal or a transport.

if (harvest < 0.5_sp) then Do a transport.
call ran1(harvest)
n(3)=n(2)+int(abs(nn-2)*harvest)+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,n) Carry out the transport.

end if
else Do a path reversal.

call revcst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,n) Carry out the reversal.

end if
end if
if (nsucc >= nlimit) exit Finish early if we have enough successful

changes.end do
write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc == 0) RETURN If no success, we are done.

end do
CONTAINS

FUNCTION alen(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,y1,y2
REAL(SP) :: alen

Computes distance between two cities.
alen=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen

FUNCTION alen_v(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,x2,y1,y2
REAL(SP), DIMENSION(size(x1)) :: alen_v

Computes distances between pairs of cities.
alen_v=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen_v

SUBROUTINE metrop(de,t,ans)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: de,t
LOGICAL(LGT), INTENT(OUT) :: ans

Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

call ran1(harvest)
ans=(de < 0.0) .or. (harvest < exp(-de/t))
END SUBROUTINE metrop

SUBROUTINE revcst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de

Chapter B10. Minimization or Maximization of Functions 1221

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

This subroutine returns the value of the cost function for a proposed path reversal. The
arrays x and y give the coordinates of these cities. iorder holds the present itinerary. The
first two values n(1) and n(2) of array n give the starting and ending cities along the path
segment which is to be reversed. On output, de is the cost of making the reversal. The
actual reversal is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(4) :: xx,yy
ncity=size(x)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) . . .
n(4)=1+mod(n(2),ncity) . . . and the city after n(2).
xx(1:4)=x(iorder(n(1:4))) Find coordinates for the four cities involved.
yy(1:4)=y(iorder(n(1:4)))
de=-alen(xx(1),xx(3),yy(1),yy(3))& Calculate cost of disconnecting the segment

at both ends and reconnecting in the op-
posite order.

-alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(1),xx(4),yy(1),yy(4))&
+alen(xx(2),xx(3),yy(2),yy(3))

END SUBROUTINE revcst

SUBROUTINE revers(iorder,n)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine performs a path segment reversal. iorder is an input array giving the present
itinerary. The vector n has as its first four elements the first and last cities n(1), n(2)
of the path segment to be reversed, and the two cities n(3) and n(4) that immediately
precede and follow this segment. n(3) and n(4) are found by subroutine revcst. On
output, iorder contains the segment from n(1) to n(2) in reversed order.

INTEGER(I4B) :: j,k,l,nn,ncity
ncity=size(iorder)
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
call swap(iorder(k),iorder(l))

end do
END SUBROUTINE revers

SUBROUTINE trncst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de

This subroutine returns the value of the cost function for a proposed path segment transport.
Arrays x and y give the city coordinates. iorder is an array giving the present itinerary.
The first three elements of array n give the starting and ending cities of the path to be
transported, and the point among the remaining cities after which it is to be inserted. On
output, de is the cost of the change. The actual transport is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(6) :: xx,yy
ncity=size(x)
n(4)=1+mod(n(3),ncity) Find the city following n(3) . . .
n(5)=1+mod((n(1)+ncity-2),ncity) . . . and the one preceding n(1) . . .
n(6)=1+mod(n(2),ncity) . . . and the one following n(2).
xx(1:6)=x(iorder(n(1:6))) Determine coordinates for the six cities in-

volved.yy(1:6)=y(iorder(n(1:6)))
de=-alen(xx(2),xx(6),yy(2),yy(6))& Calculate the cost of disconnecting the path

segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

-alen(xx(1),xx(5),yy(1),yy(5))&
-alen(xx(3),xx(4),yy(3),yy(4))&
+alen(xx(1),xx(3),yy(1),yy(3))&
+alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(5),xx(6),yy(5),yy(6))

END SUBROUTINE trncst

SUBROUTINE trnspt(iorder,n)
IMPLICIT NONE

1222 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine does the actual path transport, once metrop has approved. iorder is an
input array giving the present itinerary. The array n has as its six elements the beginning
n(1) and end n(2) of the path to be transported, the adjacent cities n(3) and n(4)
between which the path is to be placed, and the cities n(5) and n(6) that precede and
follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst. On output,
iorder is modified to reflect the movement of the path segment.

INTEGER(I4B) :: m1,m2,m3,nn,ncity
INTEGER(I4B), DIMENSION(size(iorder)) :: jorder
ncity=size(iorder)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2) . . .
m2=1+mod((n(5)-n(4)+ncity),ncity) . . . and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) . . . and the number from n(6) to n(3).
jorder(1:m1)=iorder(1+mod((arth(1,1,m1)+n(1)-2),ncity)) Copy the chosen segment.
nn=m1
jorder(nn+1:nn+m2)=iorder(1+mod((arth(1,1,m2)+n(4)-2),ncity))

Then copy the segment from n(4) to n(5).
nn=nn+m2
jorder(nn+1:nn+m3)=iorder(1+mod((arth(1,1,m3)+n(6)-2),ncity))

Finally, the segment from n(6) to n(3).
iorder(1:ncity)=jorder(1:ncity) Copy jorder back into iorder.
END SUBROUTINE trnspt
END SUBROUTINE anneal

� � �

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NMAX=200

Minimization of the N -dimensional function func by simulated annealing combined with the
downhill simplex method of Nelder and Mead. The (N+1)×N matrix p is input. Its N+1
rows are N -dimensional vectors that are the vertices of the starting simplex. Also input is
the vector y of length N+1, whose components must be preinitialized to the values of func
evaluated at the N+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be
achieved in the function value for an early return; iter, and temptr. The routine makes
iter function evaluations at an annealing temperature temptr, then returns. You should
then decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb (an array of length N) will subsequently return the best
function value and point ever encountered (even if it is no longer a point in the simplex).

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP) :: yhi
REAL(SP), DIMENSION(size(p,2)) :: psum
call amebsa_private

Chapter B10. Minimization or Maximization of Functions 1223

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CONTAINS

SUBROUTINE amebsa_private
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ylo,ynhi,ysave,ytry
REAL(SP), DIMENSION(size(y)) :: yt,harvest
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,size(pb),’amebsa’)
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

call ran1(harvest)
yt(:)=y(:)-temptr*log(harvest)

Whenever we “look at” a vertex, it gets a random thermal fluctuation.
ilo=iminloc(yt(:)) Determine which point is the highest (worst),

next-highest, and lowest (best).ylo=yt(ilo)
ihi=imaxloc(yt(:))
yhi=yt(ihi)
yt(ihi)=ylo
inhi=imaxloc(yt(:))
ynhi=yt(inhi)
rtol=2.0_sp*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol .or. iter < 0) then If returning, put best point and value in

slot 1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(-1.0_sp)
iter=iter-1
if (ytry <= ylo) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotsa(2.0_sp)
iter=iter-1

else if (ytry >= ynhi) then The reflected point is worse than the second-
highest, so look for an intermediate lower
point, i.e., do a one-dimensional contrac-
tion.

ysave=yhi
ytry=amotsa(0.5_sp)
iter=iter-1
if (ytry >= ysave) then

Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter-ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do
END SUBROUTINE amebsa_private

FUNCTION amotsa(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotsa

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,yflu,ytry,harv
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry)
if (ytry <= yb) then Save the best-ever.

pb(:)=ptry(:)

1224 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

yb=ytry
end if
call ran1(harv)
yflu=ytry+temptr*log(harv) We added a thermal fluctuation to all the cur-

rent vertices, but we subtract it here, so
as to give the simplex a thermal Brow-
nian motion: It likes to accept any sug-
gested change.

if (yflu < yhi) then
y(ihi)=ytry
yhi=yflu
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotsa=yflu
END FUNCTION amotsa
END SUBROUTINE amebsa

f90
See the discussion ofamoeba on p. 1209 for why the routine is coded
this way.

