
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B14. Statistical
Description of Data

SUBROUTINE moment(data,ave,adev,sdev,var,skew,curt)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: ave,adev,sdev,var,skew,curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data

Given an array of data, this routine returns its mean ave, average deviation adev, standard
deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER(I4B) :: n
REAL(SP) :: ep
REAL(SP), DIMENSION(size(data)) :: p,s
n=size(data)
if (n <= 1) call nrerror(’moment: n must be at least 2’)
ave=sum(data(:))/n First pass to get the mean.
s(:)=data(:)-ave Second pass to get the first (absolute), second, third, and

fourth moments of the deviation from the mean.ep=sum(s(:))
adev=sum(abs(s(:)))/n
p(:)=s(:)*s(:)
var=sum(p(:))
p(:)=p(:)*s(:)
skew=sum(p(:))
p(:)=p(:)*s(:)
curt=sum(p(:))
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if (var /= 0.0) then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.0_sp

else
call nrerror(’moment: no skew or kurtosis when zero variance’)

end if
END SUBROUTINE moment

� � �

SUBROUTINE ttest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that

1269

1270 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

the arrays have significantly different means. The data arrays are assumed to be drawn
from populations with the same true variance.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
df=n1+n2-2 Degrees of freedom.
var=((n1-1)*var1+(n2-1)*var2)/df Pooled variance.
t=(ave1-ave2)/sqrt(var*(1.0_sp/n1+1.0_sp/n2))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) See equation (6.4.9).
END SUBROUTINE ttest

� � �

SUBROUTINE avevar(data,ave,var)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var

Given array data, returns its mean as ave and its variance as var.
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(data)) :: s
n=size(data)
ave=sum(data(:))/n
s(:)=data(:)-ave
var=dot_product(s,s)
var=(var-sum(s)**2/n)/(n-1) Corrected two-pass formula (14.1.8).
END SUBROUTINE avevar

� � �

SUBROUTINE tutest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that
the arrays have significantly different means. The data arrays are allowed to be drawn from
populations with unequal variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
t=(ave1-ave2)/sqrt(var1/n1+var2/n2)
df=(var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tutest

� � �

Chapter B14. Statistical Description of Data 1271

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE tptest(data1,data2,t,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the paired arrays data1 and data2 of the same length, this routine returns Student’s
t for paired data as t, and its significance as prob, small values of prob indicating a
significant difference of means.

INTEGER(I4B) :: n
REAL(SP) :: ave1,ave2,cov,df,sd,var1,var2
n=assert_eq(size(data1),size(data2),’tptest’)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
cov=dot_product(data1(:)-ave1,data2(:)-ave2)
df=n-1
cov=cov/df
sd=sqrt((var1+var2-2.0_sp*cov)/n)
t=(ave1-ave2)/sd
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tptest

� � �

SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given the arrays data1 and data2, which need not have the same length, this routine
returns the value of f, and its significance as prob. Small values of prob indicate that the
two arrays have significantly different variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df1,df2,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
if (var1 > var2) then Make F the ratio of the larger variance to the smaller one.

f=var1/var2
df1=n1-1
df2=n2-1

else
f=var2/var1
df1=n2-1
df2=n1-1

end if
prob=2.0_sp*betai(0.5_sp*df2,0.5_sp*df1,df2/(df2+df1*f))
if (prob > 1.0) prob=2.0_sp-prob
END SUBROUTINE ftest

� � �

1272 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins,ebins

Given the same-size arrays bins containing the observed numbers of events, and ebins
containing the expected numbers of events, and given the number of constraints knstrn
(normally one), this routine returns (trivially) the number of degrees of freedom df, and
(nontrivially) the chi-square chsq and the significance prob. A small value of prob indi-
cates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both real arrays, although bins will normally contain integer values.

INTEGER(I4B) :: ndum
ndum=assert_eq(size(bins),size(ebins),’chsone’)
if (any(ebins(:) <= 0.0)) call nrerror(’bad expected number in chsone’)
df=size(bins)-knstrn
chsq=sum((bins(:)-ebins(:))**2/ebins(:))
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chsone

SUBROUTINE chstwo(bins1,bins2,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1,bins2

Given the same-size arrays bins1 and bins2, containing two sets of binned data, and given
the number of constraints knstrn (normally 1 or 0), this routine returns the number of
degrees of freedom df, the chi-square chsq, and the significance prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note
that bins1 and bins2 are both real arrays, although they will normally contain integer
values.

INTEGER(I4B) :: ndum
LOGICAL(LGT), DIMENSION(size(bins1)) :: nzeromask
ndum=assert_eq(size(bins1),size(bins2),’chstwo’)
nzeromask = bins1(:) /= 0.0 .or. bins2(:) /= 0.0
chsq=sum((bins1(:)-bins2(:))**2/(bins1(:)+bins2(:)),mask=nzeromask)
df=count(nzeromask)-knstrn No data means one less degree of freedom.
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chstwo

f90
nzeromask=...chisq=sum(...mask=nzeromask) We use the optional argu-
ment mask in sum to select out the elements to be summed over. In
this case, at least one of the elements of bins1 or bins2 is not zero

for each term in the sum.

� � �

Chapter B14. Statistical Description of Data 1273

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ksone(data,func,d,prob)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : probks,sort
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Given an array data, and given a user-supplied function of a single variable func which
is a cumulative distribution function ranging from 0 (for smallest values of its argument)
to 1 (for largest values of its argument), this routine returns the K–S statistic d, and the
significance level prob. Small values of prob show that the cumulative distribution function
of data is significantly different from func. The array data is modified by being sorted
into ascending order.

INTEGER(I4B) :: n
REAL(SP) :: en
REAL(SP), DIMENSION(size(data)) :: fvals
REAL(SP), DIMENSION(size(data)+1) :: temp
call sort(data) If the data are already sorted into as-

cending order, then this call can be
omitted.

n=size(data)
en=n
fvals(:)=func(data(:))
temp=arth(0,1,n+1)/en
d=maxval(max(abs(temp(1:n)-fvals(:)), & Compute the maximum distance between

the data’s c.d.f. and the user-supplied
function.

abs(temp(2:n+1)-fvals(:))))
en=sqrt(en)
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE ksone

f90
d=maxval(max... Note the difference between max and maxval: max

takes two or more arguments and returns the maximum. If the arguments
are two arrays, it returns an array each of whose elements is the maximum

of the corresponding elements in the two arrays. maxval takes a single array
argument and returns its maximum value.

SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : probks,sort2
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given arrays data1 and data2, which can be of different length, this routine returns the
K–S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of data1 is significantly different from that of data2. The arrays
data1 and data2 are not modified.

INTEGER(I4B) :: n1,n2
REAL(SP) :: en1,en2,en
REAL(SP), DIMENSION(size(data1)+size(data2)) :: dat,org
n1=size(data1)
n2=size(data2)
en1=n1
en2=n2
dat(1:n1)=data1 Copy the two data sets into a single ar-

ray.dat(n1+1:)=data2

1274 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

org(1:n1)=0.0 Define an array that contains 0 when the
corresponding element comes from
data1, 1 from data2.

org(n1+1:)=1.0
call sort2(dat,org)

Sort the array of 1’s and 0’s into the order of the merged data sets.
d=maxval(abs(cumsum(org)/en2-cumsum(1.0_sp-org)/en1))

Now use cumsum to get the c.d.f. corresponding to each set of data.
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE kstwo

The problem here is how to compute the cumulative distribution function
(c.d.f.) corresponding to each set of data, and then find the corresponding
KS statistic, without a serial loop over the data. The trick is to define

an array that contains 0 when the corresponding element comes from the first data
set and 1 when it’s from the second data set. Sort the array of 1’s and 0’s into the
same order as the merged data sets. Now tabulate the partial sums of the array.
Every time you encounter a 1, the partial sum increases by 1. So if you normalize
the partial sums by dividing by the number of elements in the second data set, you
have the c.d.f. of the second data set.

If you subtract the array of 1’s and 0’s from an array of all 1’s, you get an
array where 1 corresponds to an element in the first data set, 0 the second data set.
So tabulating its partial sums and normalizing gives the c.d.f. of the first data set.
As we’ve seen before, tabulating partial sums can be done with a parallel algorithm
(cumsum in nrutil). The KS statistic is just the maximum absolute difference of
the c.d.f.’s, computed in parallel with Fortran 90’s maxval function.

FUNCTION probks(alam)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alam
REAL(SP) :: probks
REAL(SP), PARAMETER :: EPS1=0.001_sp,EPS2=1.0e-8_sp
INTEGER(I4B), PARAMETER :: NITER=100

Kolmogorov-Smirnov probability function.
INTEGER(I4B) :: j
REAL(SP) :: a2,fac,term,termbf
a2=-2.0_sp*alam**2
fac=2.0
probks=0.0
termbf=0.0 Previous term in sum.
do j=1,NITER

term=fac*exp(a2*j**2)
probks=probks+term
if (abs(term) <= EPS1*termbf .or. abs(term) <= EPS2*probks) RETURN
fac=-fac Alternating signs in sum.
termbf=abs(term)

end do
probks=1.0 Get here only by failing to converge, which implies the func-

tion is very close to 1.END FUNCTION probks

� � �

Chapter B14. Statistical Description of Data 1275

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE cntab1(nn,chisq,df,prob,cramrv,ccc)
USE nrtype; USE nrutil, ONLY : outerprod
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq,df,prob,cramrv,ccc
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
this routine returns the chi-square chisq, the number of degrees of freedom df, the signif-
icance level prob (small values indicating a significant association), and two measures of
association, Cramer’s V (cramrv), and the contingency coefficient C (ccc).

INTEGER(I4B) :: nni,nnj
REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
REAL(SP), DIMENSION(size(nn,1),size(nn,2)) :: expctd
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:)) Get the grand total.
nni=size(sumi)-count(sumi(:) == 0.0)

Eliminate any zero rows by reducing the number of rows.
nnj=size(sumj)-count(sumj(:) == 0.0) Eliminate any zero columns.
df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
expctd(:,:)=outerprod(sumi(:),sumj(:))/sumn
chisq=sum((nn(:,:)-expctd(:,:))**2/(expctd(:,:)+TINY))

Do the chi-square sum. Here TINY guarantees that any eliminated row or column will not
contribute to the sum.

prob=gammq(0.5_sp*df,0.5_sp*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sumn*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sumn))
END SUBROUTINE cntab1

f90
sumi(:)=sum(...dim=2)...sumj(:)=sum(...dim=1) We use the optional ar-
gument dim of sum to sum first over the columns (dim=2) to get the row
totals, and then to sum over the rows (dim=1) to get the column totals.

expctd(:,:)=... This is a direct implementation of equation (14.4.2) using
outerprod from nrutil.

chisq=... And here is a direct implementation of equation (14.4.3).

SUBROUTINE cntab2(nn,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h,hx,hy,hygx,hxgy,uygx,uxgy,uxy
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
where the first index labels the x-variable and the second index labels the y variable, this
routine returns the entropy h of the whole table, the entropy hx of the x-distribution, the
entropy hy of the y-distribution, the entropy hygx of y given x, the entropy hxgy of x
given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y
(eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).

REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:))
hx=-sum(sumi(:)*log(sumi(:)/sumn), mask=(sumi(:) /= 0.0))/sumn

Entropy of the x distribution,
hy=-sum(sumj(:)*log(sumj(:)/sumn), mask=(sumj(:) /= 0.0))/sumn

1276 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and of the y distribution.
h=-sum(nn(:,:)*log(nn(:,:)/sumn), mask=(nn(:,:) /= 0))/sumn

Total entropy: loop over both x and y.
hygx=h-hx Uses equation (14.4.18),
hxgy=h-hy as does this.
uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.0_sp*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
END SUBROUTINE cntab2

f90
This code exploits both the dim feature of sum (see discussion after
cntab1) and the mask feature to restrict the elements to be summed over.

� � �

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given two arrays x and y of the same size, this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation
is disproved (prob whose small value indicates a significant correlation), and Fisher’s z
(returned as z), whose value can be used in further statistical tests as described above the
routine in Volume 1.
Parameter: TINY will regularize the unusual case of complete correlation.

REAL(SP), DIMENSION(size(x)) :: xt,yt
REAL(SP) :: ax,ay,df,sxx,sxy,syy,t
INTEGER(I4B) :: n
n=assert_eq(size(x),size(y),’pearsn’)
ax=sum(x)/n Find the means.
ay=sum(y)/n
xt(:)=x(:)-ax Compute the correlation co-

efficient.yt(:)=y(:)-ay
sxx=dot_product(xt,xt)
syy=dot_product(yt,yt)
sxy=dot_product(xt,yt)
r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5_sp*log(((1.0_sp+r)+TINY)/((1.0_sp-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.0_sp-r)+TINY)*((1.0_sp+r)+TINY))) Equation (14.5.5).
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) Student’s t probability.

! prob=erfcc(abs(z*sqrt(n-1.0_sp))/SQRT2)
For large n, this easier computation of prob, using the short routine erfcc, would give
approximately the same value.

END SUBROUTINE pearsn

� � �

Chapter B14. Statistical Description of Data 1277

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai,erfcc,sort2
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs

Given two data arrays of the same size, data1 and data2, this routine returns their sum-
squared difference of ranks as D, the number of standard deviations by which D deviates
from its null-hypothesis expected value as zd, the two-sided significance level of this devia-
tion as probd, Spearman’s rank correlation rs as rs, and the two-sided significance level of
its deviation from zero as probrs. data1 and data2 are not modified. A small value of
either probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).

INTEGER(I4B) :: n
REAL(SP) :: aved,df,en,en3n,fac,sf,sg,t,vard
REAL(SP), DIMENSION(size(data1)) :: wksp1,wksp2
n=assert_eq(size(data1),size(data2),’spear’)
wksp1(:)=data1(:)
wksp2(:)=data2(:)
call sort2(wksp1,wksp2) Sort each of the data arrays, and convert the

entries to ranks. The values sf and sg
return the sums

∑
(f3

k−fk) and
∑

(g3
m−

gm), respectively.

call crank(wksp1,sf)
call sort2(wksp2,wksp1)
call crank(wksp2,sg)
wksp1(:)=wksp1(:)-wksp2(:)
d=dot_product(wksp1,wksp1) Sum the squared difference of ranks.
en=n
en3n=en**3-en
aved=en3n/6.0_sp-(sf+sg)/12.0_sp Expectation value of D,
fac=(1.0_sp-sf/en3n)*(1.0_sp-sg/en3n)
vard=((en-1.0_sp)*en**2*(en+1.0_sp)**2/36.0_sp)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/SQRT2) and significance.
rs=(1.0_sp-(6.0_sp/en3n)*(d+(sf+sg)/12.0_sp))/sqrt(fac) Rank correlation coeffi-

cient,fac=(1.0_sp+rs)*(1.0_sp-rs)
if (fac > 0.0) then

t=rs*sqrt((en-2.0_sp)/fac) and its t value,
df=en-2.0_sp
probrs=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) give its significance.

else
probrs=0.0

end if
CONTAINS

SUBROUTINE crank(w,s)
USE nrtype; USE nrutil, ONLY : arth,array_copy
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: s
REAL(SP), DIMENSION(:), INTENT(INOUT) :: w

Given a sorted array w, replaces the elements by their rank, including midranking of ties,
and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER(I4B) :: i,n,ndum,nties
INTEGER(I4B), DIMENSION(size(w)) :: tstart,tend,tie,idx
n=size(w)
idx(:)=arth(1,1,n) Index vector.
tie(:)=merge(1,0,w == eoshift(w,-1))

Look for ties: Compare each element to the one before. If it’s equal, it’s part of a tie, and
we put 1 into tie. Otherwise we put 0.

tie(1)=0 Boundary; the first element must be zero.
w(:)=idx(:) Assign ranks ignoring possible ties.
if (all(tie == 0)) then No ties—we’re done.

s=0.0
RETURN

end if
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),tstart,nties,ndum)

1278 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Look for 0 → 1 transitions in tie, which mean that the 0 element is the start of a tie run.
Store index of each transition in tstart. nties is the number of ties found.

tend(1:nties)=pack(idx(:),tie(:)>eoshift(tie(:),1))
Look for 1 → 0 transitions in tie, which mean that the 1 element is the end of a tie run.

do i=1,nties Midrank assignments.
w(tstart(i):tend(i))=(tstart(i)+tend(i))/2.0_sp

end do
tend(1:nties)=tend(1:nties)-tstart(1:nties)+1 Now calculate s.
s=sum(tend(1:nties)**3-tend(1:nties))
END SUBROUTINE crank
END SUBROUTINE spear

To understand how the parallel version of crank works, let’s consider
an example of 9 elements in the array w, which is input in sorted order
to crank. The elements in our example are given in the second line

of the following table:

index 1 2 3 4 5 6 7 8 9

data in w 0 0 1 1 1 2 3 4 4
shift right 0 0 0 1 1 1 2 3 4
compare 1 1 0 1 1 0 0 0 1

tie array 0 1 0 1 1 0 0 0 1
shift left 1 0 1 1 0 0 0 1 0

0 → 1 1 3 8 start index
1 → 0 2 5 9 stop index

We look for ties by comparing this array with itself, right shifted by one element
(“shift right” in table). We record a 1 for each element that is the same, a 0 for each
element that is different (“compare”). A 1 indicates the element is part of a tie with
the preceding element, so we always set the first element to 0, even if it was a 1
as in our example. This gives the “tie array.” Now wherever the tie array makes a
transition 0 → 1 indicates the start of a tie run, while a 1 → 0 transition indicates
the end of a tie run. We find these transitions by comparing the tie array to itself
left shifted by one (“shift left”). If the tie array element is smaller than the shifted
array element, we have a 0 → 1 transition and we record the corresponding index
as the start of a tie. Similarly if the tie array element is larger we record the index
as the end of a tie. Note that the shifts must be end-off shifts with zeros inserted in
the gaps for the boundary conditions to work.

f90
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),

tstart,nties,ndum)

The start indices (1, 3, and 8 in our example above) are here packed into
the first few elements of tstart. array copy is a useful routine in nrutil for
copying elements from one array to another, when the number of elements to be
copied is not known in advance. This line of code is equivalent to

tstart(:)=0
tstart(:)=pack(idx(:), tie(:) < eoshift(tie(:),1),tstart(:))
nties=count(tstart(:) > 0)

The point is that we don’t know how many elements pack is going to select. We
have to make sure the dimensions of both sides of the pack statement are the same,

Chapter B14. Statistical Description of Data 1279

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

so we set the optional third argument of pack to tstart. We then make a separate
pass through tstart to count how many elements we copied. Alternatively, we
could have used an additional logical array mask and coded this as

mask(:)=tie(:) < eoshift(tie(:),1)
nties=count(mask)
tstart(1:nties)=pack(idx(:),mask)

But we still need two passes through the mask array. The beauty of the array copy

routine is that nties is determined from the size of the first argument, without the
necessity for a second pass through the array.

� � �

SUBROUTINE kendl1(data1,data2,tau,z,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: tau,z,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given same-size data arrays data1 and data2, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative).

INTEGER(I4B) :: is,j,n,n1,n2
REAL(SP) :: var
REAL(SP), DIMENSION(size(data1)) :: a1,a2
n=assert_eq(size(data1),size(data2),’kendl1’)
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do j=1,n-1 For each first member of pair,

a1(j+1:n)=data1(j)-data1(j+1:n) loop over second member.
a2(j+1:n)=data2(j)-data2(j+1:n)
n1=n1+count(a1(j+1:n) /= 0.0)
n2=n2+count(a2(j+1:n) /= 0.0)

Now accumulate the numerator in (14.6.8):
is=is+count((a1(j+1:n) > 0.0 .and. a2(j+1:n) > 0.0) &

.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) < 0.0)) - &
count((a1(j+1:n) > 0.0 .and. a2(j+1:n) < 0.0) &
.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) > 0.0))

end do
tau=real(is,sp)/sqrt(real(n1,sp)*real(n2,sp)) Equation (14.6.8).
var=(4.0_sp*n+10.0_sp)/(9.0_sp*n*(n-1.0_sp)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2) Significance.
END SUBROUTINE kendl1

SUBROUTINE kendl2(tab,tau,z,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau,z,prob

Given a two-dimensional table tab such that tab(k, l) contains the number of events falling
in bin k of one variable and bin l of another, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau

1280 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

negative) between the two variables. Although tab is a real array, it will normally contain
integral values.

REAL(SP), DIMENSION(size(tab,1),size(tab,2)) :: cum,cumt
INTEGER(I4B) :: i,j,ii,jj
REAL(SP) :: sc,sd,en1,en2,points,var
ii=size(tab,1)
jj=size(tab,2)
do i=1,ii Get cumulative sums leftward along

rows.cumt(i,jj:1:-1)=cumsum(tab(i,jj:1:-1))
end do
en2=sum(tab(1:ii,1:jj-1)*cumt(1:ii,2:jj)) Tally the extra-y pairs.
do j=1,jj Get counts of points to lower-right

of each cell in cum.cum(ii:1:-1,j)=cumsum(cumt(ii:1:-1,j))
end do
points=cum(1,1) Total number of entries in table.
sc=sum(tab(1:ii-1,1:jj-1)*cum(2:ii,2:jj)) Tally the concordant pairs.
do j=1,jj Now get counts of points to upper-

right of each cell in cum,cum(1:ii,j)=cumsum(cumt(1:ii,j))
end do
sd=sum(tab(2:ii,1:jj-1)*cum(1:ii-1,2:jj)) giving tally of discordant points.
do j=1,jj Finally, get cumulative sums upward

along columns,cumt(ii:1:-1,j)=cumsum(tab(ii:1:-1,j))
end do
en1=sum(tab(1:ii-1,1:jj)*cumt(2:ii,1:jj)) giving the count of extra-x pairs,
tau=(sc-sd)/sqrt((en1+sc+sd)*(en2+sc+sd)) and compute desired results.
var=(4.0_sp*points+10.0_sp)/(9.0_sp*points*(points-1.0_sp))
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2)
END SUBROUTINE kendl2

The underlying algorithm in kendl2 might seem to require looping over
all pairs of cells in the two-dimensional table tab. Actually, however,
clever use of the cumsum utility function reduces this to a simple loop

over all the cells; moreover this “loop” parallelizes into a simple parallel product and
call to the sum intrinsic. The basic idea is shown in the following table:

d d

t y y

x c c

x c c

x c c

Relative to the cell marked t (which we use to denote the numerical value it contains),
the cells marked d contribute to the “discordant” tally in Volume 1’s equation (14.6.8),

Chapter B14. Statistical Description of Data 1281

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

while the cells marked c contribute to the “concordant” tally. Likewise, the cells
marked x and y contribute, respectively, to the “extra-x” and “extra-y” tallies. What
about the cells left blank? Since we want to count pairs of cells only once, without
duplication, these cells will be counted, relative to the location shown as t, when
t itself moves into the blank-cell area.

Symbolically we have

concordant =
∑
n

tn


 ∑

lower right

cm




discordant =
∑
n

tn


 ∑

upper right

dm




extra-x =
∑
n

tn

(∑
below

xm

)

extra-y =
∑
n

tn


 ∑

to the right

ym




(B14.1)

Here n varies over all the positions in the table, while the limits of the inner sums
are relative to the position of n. (The letters tn, cm, dm, xm, ym all represent the
value in a cell; we use different letters only to make the relation with the above table
clear.) Now the final trick is to recognize that the inner sums, over cells to the lower-
or upper-right, below, and to the right can be done in parallel by cumulative sums
(cumsum) sweeping to the right and up. The routine does these in a nonintuitive
order merely to be able to reuse maximally the scratch spaces cum and cumt.

� � �

SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x-
and y-coordinates of a set of data points in arrays x1 and y1 of the same length, and given
a user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1
REAL(SP) :: dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d1s’)
d1=0.0

1282 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do j=1,n1 Loop over the data points.
call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

end do
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(real(n1,sp))
rr=sqrt(1.0_sp-r1**2)

Estimate the probability using the K-S probability function probks.
prob=probks(d1*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d1s

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

Given an origin (x,y), and an array of points with coordinates xx and yy, count how many of
them are in each quadrant around the origin, and return the normalized fractions. Quadrants
are labeled alphabetically, counterclockwise from the upper right. Used by ks2d1s and
ks2d2s.

INTEGER(I4B) :: na,nb,nc,nd,nn
REAL(SP) :: ff
nn=assert_eq(size(xx),size(yy),’quadct’)
na=count(yy(:) > y .and. xx(:) > x)
nb=count(yy(:) > y .and. xx(:) <= x)
nc=count(yy(:) <= y .and. xx(:) <= x)
nd=nn-na-nb-nc
ff=1.0_sp/nn
fa=ff*na
fb=ff*nb
fc=ff*nc
fd=ff*nd
END SUBROUTINE quadct

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL(SP) :: qa,qb,qc,qd
qa=min(2.0_sp,max(0.0_sp,1.0_sp-x))
qb=min(2.0_sp,max(0.0_sp,1.0_sp-y))
qc=min(2.0_sp,max(0.0_sp,x+1.0_sp))
qd=min(2.0_sp,max(0.0_sp,y+1.0_sp))
fa=0.25_sp*qa*qb
fb=0.25_sp*qb*qc
fc=0.25_sp*qc*qd
fd=0.25_sp*qd*qa
END SUBROUTINE quadvl

Chapter B14. Statistical Description of Data 1283

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob

Compute two-dimensional Kolmogorov-Smirnov test on two samples. Input are the x- and
y-coordinates of the first sample in arrays x1 and y1 of the same length, and of the second
sample in arrays x2 and y2 of the same length (possibly different from the length of the first
sample). The routine returns the two-dimensional, two-sample K-S statistic as d, and its
significance level as prob. Small values of prob show that the two samples are significantly
different. Note that the test is slightly distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1,n2
REAL(SP) :: d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d2s: n1’)
n2=assert_eq(size(x2),size(y2),’ks2d2s: n2’)
d1=0.0
do j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d2=0.0
do j=1,n2 Then, use points in the second sample as ori-

gins.call quadct(x2(j),y2(j),x1,y1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d=0.5_sp*(d1+d2) Average the K-S statistics.
sqen=sqrt(real(n1,sp)*real(n2,sp)/real(n1+n2,sp))
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient for each sam-

ple.call pearsn(x2,y2,r2,dum,dumm)
rr=sqrt(1.0_sp-0.5_sp*(r1**2+r2**2))

Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d2s

� � �

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype; USE nrutil, ONLY : arth,assert,poly
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nl,nrr,ld,m

Returns in array c, in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward
(past) data points used, while nrr is the number of rightward (future) data points, making
the total number of data points used nl+nrr+1. ld is the order of the derivative desired
(e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also
equal to the highest conserved moment; usual value is m = 2 or m = 4.

REAL(SP), DIMENSION(nl+nrr+1) :: savgol
INTEGER(I4B) :: imj,ipj,mm,np
INTEGER(I4B), DIMENSION(m+1) :: indx
REAL(SP) :: d,sm
REAL(SP), DIMENSION(m+1) :: b
REAL(SP), DIMENSION(m+1,m+1) :: a
INTEGER(I4B) :: irng(nl+nrr+1)
call assert(nl >= 0, nrr >= 0, ld <= m, nl+nrr >= m, ’savgol args’)
do ipj=0,2*m Set up the normal equations of the desired least

squares fit.sm=sum(arth(1.0_sp,1.0_sp,nrr)**ipj)+&
sum(arth(-1.0_sp,-1.0_sp,nl)**ipj)

1284 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (ipj == 0) sm=sm+1.0_sp
mm=min(ipj,2*m-ipj)
do imj=-mm,mm,2

a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sm
end do

end do
call ludcmp(a(:,:),indx(:),d) Solve them: LU decomposition.
b(:)=0.0
b(ld+1)=1.0 Right-hand-side vector is unit vector, depending

on which derivative we want.call lubksb(a(:,:),indx(:),b(:))
Backsubstitute, giving one row of the inverse matrix.

savgol(:)=0.0 Zero the output array (it may be bigger than
number of coefficients).irng(:)=arth(-nl,1,nrr+nl+1)

np=nl+nrr+1
savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))

Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
care of the wrap-around order.

END FUNCTION savgol

f90
do imj=-mm,mm,2 Here is an example of a loop that cannot be parallelized
in the framework of Fortran 90: We need to access “skew” sections of
the matrix a.

savgol...=poly(real(irng(:),sp),b(:))) The poly function in nrutil re-
turns the value of a polynomial, here the one in equation (14.8.6). We need the
explicit kind type parameter sp in the real function, otherwise it would return
type default real for the integer argument and would not automatically convert to
double precision if desired.

