
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 23. Numerical Recipes
Utility Functions for
Fortran 90

23.0 Introduction and Summary Listing

This chapter describes and summarizes the Numerical Recipes utility routines
that are used throughout the rest of this volume. A complete implementation of these
routines in Fortran 90 is listed in Appendix C1.

Why do we need utility routines? Aren’t there already enough of them built
into the language as Fortran 90 intrinsics? The answers lie in this volume’s dual
purpose: to implement the Numerical Recipes routines in Fortran 90 code that runs
efficiently on fast serial machines,and to implement them, wherever possible, with
efficient parallel code for multiprocessor machines that will become increasingly
common in the future. We have found three kinds of situations where additional
utility routines seem desirable:

1. Fortran 90 is a big language, with many high-level constructs — single
statements that actually result in a lot of computing. We like this; it gives the
language the potential for expressing algorithms very readably, getting them “out
of the mud” of microscopic coding. In coding the 350+ Recipes for this volume,
we kept a systematic watch for bits of microscopic coding that were repeated in
many routines, and that seemed to be at a lower level of coding than that aspired
to by good Fortran 90 style. Once these bits were identified, we pulled them out
and substituted calls to new utility routines. These are the utilities that arguably
ought to be new language intrinsics, equally useful for serial and parallel machines.
(A prime example isswap.)

2. Fortran 90 contains many highly parallelizable language constructions. But,
as we have seen in§22.5, it is also missing a few important constructions. Most
parallel machines will provide these missing elements as machine-coded library
subroutines. Some of our utility routines are provided simply as a standard interface
to these common, but nonstandard, functionalities. Note that it is the nature of
these routines that our specific implementation, in Appendix C1, will be serial,
and therefore inefficient on parallel machines. If you have a parallel machine,
you will need to recode these; this often involves no more than substituting a
one-line library function call for the body of our implementation. Utilities in this
category will likely become unnecessary over time, either as machine-dependent
libraries converge to standard interfaces, or as the utilities get added to future Fortran

987



988 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

versions. (Indeed, some routines in this category will be unnecessary in Fortran
95, once it is available; see§23.7.)

3. Some tasks should just be done differently in serial, versus parallel,
implementation. Linear recurrence relations are a good example (§22.2). These
are trivially coded with a do-loop on serial machines, but require a fairly elaborate
recursive construction for good parallelization. Rather than provide separate serial
and parallel versions of the Numerical Recipes, we have chosen to pull out of the
Recipes, and into utility routines, some identifiable tasks of this kind. These are
cases where some recoding of our implementation in Appendix C1 might result
in improved performance on your particular hardware. Unfortunately, it is not so
simple as providing a single “serial implementation” and another single “parallel
implementation,” because even the seemingly simple word “serial” hides, at the
hardware level, a variety of different degrees of pipelining, wide instructions, and
so on. Appendix C1 therefore provides only a single implementation, although with
some adjustable parameters that you can customize (by experiment) to maximize
performance on your hardware.

The above three cases are not really completely distinct, and it is therefore not
possible to assign any single utility routine to exactly one situation. Instead, we
organize the rest of this chapter as follows: first, an alphabetical list, with short
summary, of all the new utility routines; next, a series of short sections, grouped by
functionality, that contain the detailed descriptions of the routines.

Alphabetical Listing

The following list gives an abbreviated mnemonic for the type, rank, and/or
shape of the returned values (as in§21.4), the routine’s calling sequence (optional
arguments shown in italics), and a brief, often incomplete, description. The complete
description of the routine is given in the later section shown in square brackets.

For each entry, the number shown in parentheses is the approximate number of
distinct Recipes in this book that make use of that particular utility function, and is
thus a rough guide to that utility’s importance. (There may be multiple invocations
of the utility in each such Recipe.) Where this number is small or zero, it is usually
because the utility routine is a member of a related family of routines whose total
usage was deemed significant enough to include, and we did not want users to have
to “guess” which family members were instantiated.

call array copy(src,dest,n copied,n not copied)

Copy one-dimensional array (whose size is not necessarily known).
[23.1] (9)

[Arr] arth(first,increment,n)

Return an arithmetic progression as an array. [23.4] (55)

call assert(n1,n2,...,string)

Exit with error message if any logical arguments are false. [23.3] (50)

[Int] assert eq(n1,n2,...,string)

Exit with error message if all integer arguments are not equal;otherwise
return common value. [23.3] (133)

[argTS] cumprod(arr,seed)



23.0 Introduction and Summary Listing 989

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Cumulative products of one-dimensional array, with optional seed
value. [23.4] (3)

[argTS] cumsum(arr,seed)
Cumulative sums of one-dimensional array, with optional seed value.
[23.4] (9)

call diagadd(mat,diag)

Adds vector to diagonal of a matrix. [23.7] (4)

call diagmult(mat,diag)

Multiplies vector into diagonal of a matrix. [23.7] (2)

[Arr] geop(first,factor,n)

Return a geometrical progression as an array. [23.4] (7)

[Arr] get diag(mat)

Gets diagonal of a matrix. [23.7] (2)

[Int] ifirstloc(arr)

Location of first true value in a logical array, returned as an integer.
[23.2] (3)

[Int] imaxloc(arr)

Location of array maximum, returned as an integer. [23.2] (11)

[Int] iminloc(arr)

Location of array minimum, returned as an integer. [23.2] (8)

[Mat] lower triangle(j,k,extra)

Returns a lower triangular logical mask. [23.7] (1)

call nrerror(string)

Exit with error message. [23.3] (96)

[Mat] outerand(a,b)

Returns the outer logical and of two vectors. [23.5] (1)

[Mat] outerdiff(a,b)

Returns the outer difference of two vectors. [23.5] (4)

[Mat] outerdiv(a,b)

Returns the outer quotient of two vectors. [23.5] (0)

[Mat] outerprod(a,b)

Returns the outer product of two vectors. [23.5] (14)

[Mat] outersum(a,b)

Returns the outer sum of two vectors. [23.5] (0)

[argTS] poly(x,coeffs,mask)
Evaluate a polynomialP (x) for one or more valuesx, with optional
mask. [23.4] (15)

[argTS] poly term(a,x)

Returns partial cumulants of a polynomial, equivalent to synthetic



990 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

division. [23.4] (4)

call put diag(diag,mat)

Sets diagonal of a matrix. [23.7] (0)

[Ptr] reallocate(p,n,m,...)

Reallocate pointer to new size, preserving its contents. [23.1] (5)

call scatter add(dest,source,dest index)

Scatter-adds source vector to specified components of destination
vector. [23.6] (2)

call scatter max(dest,source,dest index)

Scatter-max source vector to specified components of destination
vector. [23.6] (0)

call swap(a,b,mask)

Swap corresponding elements ofa andb. [23.1] (24)

call unit matrix(mat)

Sets matrix to be a unit matrix. [23.7] (6)

[Mat] upper triangle(j,k,extra)

Returns an upper triangular logical mask. [23.7] (4)

[Real] vabs(v)

Length of a vector inL2 norm. [23.8] (6)

[CArr] zroots unity(n,nn)

Returnsnn consecutive powers of the complexnth root of unity.
[23.4] (4)

Comment on Relative Frequencies of Use

We find it interesting to compare our frequency of using thenrutil utility
routines, with our most used language intrinsics (see§21.4). On this basis, the
following routines are as useful to us as thetop 10 language intrinsics:arth,
assert, assert eq, outerprod, poly, andswap. We strongly recommend that
the X3J3 standards committee, as well as individual compiler library implementors,
consider the inclusion of new language intrinsics (or library routines) that subsume
the capabilities of at least these routines. In the next tier of importance, we
would put some further cumulative operations (geop, cumsum), some other “outer”
operations on vectors (e.g.,outerdiff), basic operations on the diagonals of
matrices (get diag, put diag, diag add), and some means of access to an array
of unknown size (array copy).

23.1 Routines That Move Data

To describe our utility routines, we introduce two items of Fortran 90 pseu-
docode: We use the symbolT to denote some type and rank declaration (including



23.1 Routines That Move Data 991

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

scalar rank, i.e., zero); and when we append a colon to a type specification, as in
INTEGER(I4B)(:), for example, we denote an array of the given type.

The routinesswap, array copy, andreallocate simply move data around
in useful ways.

� � �

swap (swaps corresponding elements)

User interface (or, “USE nrutil”):
SUBROUTINE swap(a,b,mask)
T, INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN), OPTIONAL :: mask
END SUBROUTINE swap

Applicable types and ranks:
T ≡ any type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(SP)(:), REAL(DP),

COMPLEX(SPC), COMPLEX(SPC)(:), COMPLEX(SPC)(:,:),

COMPLEX(DPC), COMPLEX(DPC)(:), COMPLEX(DPC)(:,:)

Action:
Swaps the corresponding elements ofa andb. If mask is present, performs
the swap only wheremask is true. (Following code is the unmasked case.
For speed at run time, the masked case is implemented by overloading, not
by testing for the optional argument.)

Reference implementation:
T :: dum
dum=a
a=b
b=dum

� � �

array copy (copy one-dimensional array)

User interface (or, “USE nrutil”):
SUBROUTINE array_copy(src,dest,n_copied,n_not_copied)
T, INTENT(IN) :: src
T, INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
END SUBROUTINE array_copy

Applicable types and ranks:
T ≡ any type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:), REAL(DP)(:)

Action:
Copies to a destination arraydest the one-dimensional arraysrc, or as
much ofsrc as will fit in dest. Returns the number of components copied
asn copied, and the number of components not copied asn not copied.

The main use of this utility is wheresrc is an expression that returns an
array whose size is not known in advance, for example, the value returned
by the pack intrinsic.



992 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

� � �

reallocate (reallocate a pointer, preserving contents)

User interface (or, “USE nrutil”):
FUNCTION reallocate(p,n[,m, . . .])
T, POINTER :: p, reallocate
INTEGER(I4B), INTENT(IN) :: n[,m, . . .]
END FUNCTION reallocate

Applicable types and ranks:
T ≡ any type, rank 1 or greater

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), INTEGER(I4B)(:,:), REAL(SP)(:),

REAL(SP)(:,:), CHARACTER(1)(:)

Action:
Allocates storage for a new array with shape specified by the integer(s)n, m,
. . . (equal in number to the rank of pointerp). Then, copies the contents of
p’s target (or as much as will fit) into the new storage. Then, deallocatesp

and returns a pointer to the new storage.

The typical use isp=reallocate(p,n[, m, . . .]), which has the effect of
changing the allocated size ofp while preserving the contents.

The reference implementation, below, shows only the case of rank 1.

Reference implementation:
INTEGER(I4B) :: nold,ierr
allocate(reallocate(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)

23.2 Routines Returning a Location

Fortran 90’s intrinsicsmaxloc andminloc return rank-one arrays. When, in the
most frequent usage, their argument is a one-dimensional array, the answer comes
back in the inconvenient form of an array containing a single component, which
cannot be itself used in a subscript calculation. While there are workaround tricks
(e.g., use of thesum intrinsic to convert the array to a scalar), it seems clearer to
define routinesimaxloc andiminloc that return integers directly.

The routineifirstloc adds a related facility missing among the intrinsics:
Return the first true location in a logical array.

� � �



23.2 Routines Returning a Location 993

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

imaxloc (location of array maximum as an integer)

User interface (or, “USE nrutil”):
FUNCTION imaxloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: imaxloc
END FUNCTION imaxloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:)

Action:
For one-dimensional arrays, identical to themaxloc intrinsic, except returns
its answer as an integer rather than asmaxloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc=imax(1)

� � �

iminloc (location of array minimum as an integer)

User interface (or, “USE nrutil”):
FUNCTION iminloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: iminloc
END FUNCTION iminloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)(:)

Action:
For one-dimensional arrays, identical to theminloc intrinsic, except returns
its answer as an integer rather than asminloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imin
imin=minloc(arr(:))
iminloc=imin(1)

� � �

ifirstloc (returns location of first “true” in a logical vector)

User interface (or, “USE nrutil”):
FUNCTION ifirstloc(mask)
T, INTENT(IN) :: mask
INTEGER(I4B) :: ifirstloc
END FUNCTION ifirstloc



994 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Applicable types and ranks:
T ≡ any logical type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns the index (subscript value) of the first location, in a one-dimensional
logical mask, that has the value.TRUE., or returnssize(mask)+1 if all
components ofmask are .FALSE.

Note that while the reference implementation uses a do-loop, the function is
parallelized innrutil by instead using themerge andmaxloc intrinsics.

Reference implementation:
INTEGER(I4B) :: i
do i=1,size(mask)

if (mask(i)) then
ifirstloc=i
return

end if
end do
ifirstloc=i

23.3 Argument Checking and Error Handling

It is good programming practice for a routine to check the assumptions
(“assertions”) that it makes about the sizes of input arrays, allowed range of
numerical arguments, and so forth. The routinesassert andassert eq are meant
for this kind of use. The routinenrerror is our default error reporting routine.

� � �

assert (exit with error message if any assertion is false)

User interface (or, “USE nrutil”):
SUBROUTINE assert(n1,n2,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,...
END SUBROUTINE assert

Action:
Embedding program dies gracefully with an error message if any of the
logical arguments are false. Typical use is with logical expressions as the
actual arguments.nrutil implements and overloads forms with 1, 2, 3, and
4 logical arguments, plus a form with a vector logical argument,
LOGICAL, DIMENSION(:), INTENT(IN) :: n

that is checked by theall(n) intrinsic.



23.3 Argument Checking and Error Handling 995

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
if (.not. (n1.and.n2.and...)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, string
STOP ’program terminated by assert’

end if

� � �

assert eq (exit with error message if integer arguments not all equal)

User interface (or, “USE nrutil”):
FUNCTION assert_eq(n1,n2,n3,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,...
INTEGER :: assert_eq
END FUNCTION assert_eq

Action:
Embedding program dies gracefully with an error message if any of the
integer arguments are not equal to the first. Otherwise, return the value of
the first argument. Typical use is for enforcing equality on the sizes of arrays
passed to a subprogram.nrutil implements and overloads forms with 1, 2,
3, and 4 integer arguments, plus a form with a vector integer argument,
INTEGER, DIMENSION(:), INTENT(IN) :: n

that is checked by the conditionalif (all(nn(2:)==nn(1))).

Reference implementation:
if (n1==n2.and.n2==n3.and...) then

assert_eq=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, string
STOP ’program terminated by assert_eq’

end if

� � �

nrerror (report error message and stop)

User interface (or, “USE nrutil”):
SUBROUTINE nrerror(string)
CHARACTER(LEN=*), INTENT(IN) :: string
END SUBROUTINE nrerror

Action:
This is the minimal error handler used in this book. In applications of
any complexity, it is intended only as a placeholder for a user’s more
complicated error handling strategy.

Reference implementation:
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’



996 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

23.4 Routines for Polynomials and Recurrences

Apart from programming convenience, these routines are designed to allow for
nontrivial parallel implementations, as discussed in§22.2 and§22.3.

� � �

arth (returns arithmetic progression as an array)

User interface (or, “USE nrutil”):
FUNCTION arth(first,increment,n)
T, INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: arth
END FUNCTION arth

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns an array of lengthn containing an arithmetic progression whose
first value isfirst and whose increment isincrement. If first and
increment have rank greater than zero, returns an array of one larger rank,
with the last subscript having sizen and indexing the progressions. Note that
the following reference implementation (for the scalar case) is definitional
only, and neither parallelized nor optimized for roundoff error. See§22.2
and Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) arth(1)=first
do k=2,n

arth(k)=arth(k-1)+increment
end do

� � �

geop (returns geometric progression as an array)

User interface (or, “USE nrutil”):
FUNCTION geop(first,factor,n)
T, INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: geop
END FUNCTION geop

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP), REAL(DP)(:),

COMPLEX(SPC)



23.4 Routines for Polynomials and Recurrences 997

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Returns an array of lengthn containing a geometric progression whose first
value isfirst and whose multiplier isfactor. If first and factor

have rank greater than zero, returns an array of one larger rank, with the
last subscript having sizen and indexing the progression. Note that the
following reference implementation (for the scalar case) is definitional only,
and neither parallelized nor optimized for roundoff error. See§22.2 and
Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) geop(1)=first
do k=2,n

geop(k)=geop(k-1)*factor
end do

� � �

cumsum (cumulative sum on an array, with optional additive seed)

User interface (or, “USE nrutil”):
FUNCTION cumsum(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumsum
END FUNCTION cumsum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative sums ofarr. If the optional argumentseed
is present, it is added to the first component (and therefore, by cumulation,
all components) of the result. See§22.2 for parallelization ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=0.0
if (present(seed)) sd=seed
cumsum(1)=arr(1)+sd
do j=2,n

cumsum(j)=cumsum(j-1)+arr(j)
end do

� � �

cumprod (cumulative prod on an array, with optional multiplicative seed)

User interface (or, “USE nrutil”):
FUNCTION cumprod(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumprod
END FUNCTION cumprod



998 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative products ofarr. If the optional argument
seed is present, it is multiplied into the first component (and therefore, by
cumulation, into all components) of the result. See§22.2 for parallelization
ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=1.0
if (present(seed)) sd=seed
cumprod(1)=arr(1)*sd
do j=2,n

cumprod(j)=cumprod(j-1)*arr(j)
end do

� � �

poly (polynomial evaluation)

User interface (or, “USE nrutil”):
FUNCTION poly(x,coeffs,mask)
T,, DIMENSION(:,...), INTENT(IN) :: x
T, DIMENSION(:), INTENT(IN) :: coeffs
LOGICAL(LGT), DIMENSION(:,...), OPTIONAL, INTENT(IN) :: mask
T :: poly
END FUNCTION poly

Applicable types and ranks:
T ≡ any numerical type (xmay be scalar or have any rank;x and

coeffs may have different numerical types)
Types and ranks implemented (overloaded) innrutil:

T ≡ various combinations ofREAL(SP), REAL(SP)(:), REAL(DP),

REAL(DP)(:), COMPLEX(SPC) (see Appendix C1 for de-
tails)

Action:
Returns a scalar value or array with the same type and shape asx, containing
the result of evaluating the polynomial with one-dimensional coefficient
vectorcoeffs on each component ofx. The optional argumentmask, if
present, has the same shape asx, and suppresses evaluation of the polynomial
where its components are.false.. The following reference code shows
the case wheremask is not present. (The other case can be included by
overloading.)



23.4 Routines for Polynomials and Recurrences 999

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
INTEGER(I4B) :: i,n
n=size(coeffs)
if (n <= 0) then

poly=0.0
else

poly=coeffs(n)
do i=n-1,1,-1

poly=x*poly+coeffs(i)
end do

end if

� � �

poly term (partial cumulants of a polynomial)

User interface (or, “USE nrutil”):
FUNCTION poly_term(a,x)
T, DIMENSION(:), INTENT(IN) :: a
T, INTENT(IN) :: x
T, DIMENSION(size(a)) :: poly_term
END FUNCTION poly_term

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), COMPLEX(SPC)

Action:
Returns an array of type and size the same as the one-dimensional array
a, containing the partial cumulants of the polynomial with coefficientsa

(arranged from highest-order to lowest-order coefficients, n.b.) evaluated
at x. This is equivalent to synthetic division, and can be parallelized. See
§22.3. Note that the order of arguments is reversed inpoly andpoly term

— each routine returns a value with the size and shape of thefirst argument,
the usual Fortran 90 convention.

Reference implementation:
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) return
poly_term(1)=a(1)
do j=2,n

poly_term(j)=a(j)+x*poly_term(j-1)
end do

� � �

zroots unity (returns powers of complexnth root of unity)

User interface (or, “USE nrutil”):
FUNCTION zroots_unity(n,nn)
INTEGER(I4B), INTENT(IN) :: n,nn
COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
END FUNCTION zroots_unity



1000 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Returns a complex array containingnn consecutive powers of thenth
complex root of unity. Note that the following reference implementation is
definitional only, and neither parallelized nor optimized for roundoff error.
See Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
REAL(SP) :: theta
if (nn==0) return
zroots_unity(1)=1.0
if (nn==1) return
theta=TWOPI/n
zroots_unity(2)=cmplx(cos(theta),sin(theta))
do k=3,nn

zroots_unity(k)=zroots_unity(k-1)*zroots_unity(2)
end do

23.5 Routines for Outer Operations on Vectors

Outer operations on vectors take two vectors as input, and return a matrix as
output. One dimension of the matrix is the size of the first vector, the other is the
size of the second vector. Our convention is always the standard one,

result(i,j) = first operand(i) (op) second operand(j)

where(op) is any of addition, subtraction, multiplication, division, and logicaland.
The reason for coding these as utility routines is that Fortran 90’s native construction,
with two spreads (cf.§22.1), is difficult to read and thus prone to programmer errors.

� � �

outerprod (outer product)

User interface (or, “USE nrutil”):
FUNCTION outerprod(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerprod
END FUNCTION outerprod

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer product of two vectors.

Reference implementation:
outerprod = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))

� � �



23.5 Routines for Outer Operations on Vectors 1001

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

outerdiv (outer quotient)

User interface (or, “USE nrutil”):
FUNCTION outerdiv(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiv
END FUNCTION outerdiv

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer quotient of two vectors.

Reference implementation:
outerdiv = spread(a,dim=2,ncopies=size(b)) / &

spread(b,dim=1,ncopies=size(a))

� � �

outersum (outer sum)

User interface (or, “USE nrutil”):
FUNCTION outersum(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outersum
END FUNCTION outersum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer sum of two vectors.

Reference implementation:
outersum = spread(a,dim=2,ncopies=size(b)) + &

spread(b,dim=1,ncopies=size(a))

� � �

outerdiff (outer difference)

User interface (or, “USE nrutil”):
FUNCTION outerdiff(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiff
END FUNCTION outerdiff

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer difference of two vectors.



1002 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
outerdiff = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))

� � �

outerand (outer logical and)

User interface (or, “USE nrutil”):
FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
END FUNCTION outerand

Applicable types and ranks:
T ≡ any logical type

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns a matrix that is the outer logical and of two vectors.

Reference implementation:
outerand = spread(a,dim=2,ncopies=size(b)) .and. &

spread(b,dim=1,ncopies=size(a))

23.6 Routines for Scatter with Combine

These are common parallel functions that Fortran 90 simply doesn’t provide
a means for implementing. If you have a parallel machine, you should substitute
library routines specific to your hardware.

� � �

scatter add (scatter-add source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_add(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_add

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)



23.6 Routines for Scatter with Combine 1003

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Adds each component of the arraysource into a component ofdest
specified by the index arraydest index. (The user will usually have
zeroed dest before the call to this routine.) Note thatdest index

has the size ofsource, but must contain values in the range from1 to
size(dest), inclusive. Out-of-range values are ignored. There is no
parallel implementation of this routine accessible from Fortran 90; most
parallel machines supply an implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_add’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do

� � �

scatter max (scatter-max source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_max(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_max

Applicable types and ranks:
T ≡ any integer or real type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Takes themax operation between each component of the arraysource and
a component ofdest specified by the index arraydest index, replacing
that component ofdest with the value obtained (“maxing into” operation).
(The user will often want to fill the arraydest with the value−huge before
the call to this routine.) Note thatdest index has the size ofsource,
but must contain values in the range from1 to size(dest), inclusive.
Out-of-range values are ignored. There is no parallel implementation of
this routine accessible from Fortran 90; most parallel machines supply an
implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_max’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))

end do



1004 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

23.7 Routines for Skew Operations on Matrices

These are also missing parallel capabilities in Fortran 90. In Appendix C1 they
are coded serially, with one or more do-loops.

� � �

diagadd (adds vector to diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagadd(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagadd

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is added to the diagonal of
the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagadd’)
do j=1,n

mat(j,j)=mat(j,j)+diag(j)
end do

� � �

diagmult (multiplies vector into diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagmult(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagmult

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is multiplied onto the diagonal
of the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).



23.7 Routines for Skew Operations on Matrices 1005

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagmult’)
do j=1,n

mat(j,j)=mat(j,j)*diag(j)
end do

� � �

get diag (gets diagonal of matrix)

User interface (or, “USE nrutil”):
FUNCTION get_diag(mat)
T, DIMENSION(:,:), INTENT(IN) :: mat
T, DIMENSION(min(size(mat,1),size(mat,2))) :: get_diag
END FUNCTION get_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a vector containing the diagonal values of the matrixmat.

Reference implementation:
INTEGER(I4B) :: j
do j=1,min(size(mat,1),size(mat,2))

get_diag(j)=mat(j,j)
end do

� � �

put diag (sets the diagonal elements of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE put_diag(diag,mat)
T, DIMENSION(:), INTENT(IN) :: diag
T, DIMENSION(:,:), INTENT(INOUT) :: mat
END SUBROUTINE put_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal of matrixmat equal to the argumentdiag, either a scalar or
else a vector whose size must be the smaller of the two dimensions of matrix
mat. The following shows an implementation wherediag is a vector; the
scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n=assert_eq(size(diag),min(size(mat,1),size(mat,2)),’put_diag’)
do j=1,n

mat(j,j)=diag(j)
end do

� � �



1006 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

unit matrix (returns a unit matrix)

User interface (or, “USE nrutil”):
SUBROUTINE unit_matrix(mat)
T, DIMENSION(:,:), INTENT(OUT) :: mat
END SUBROUTINE unit_matrix

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal components ofmat to unity, all other components to zero.
Whenmat is square, this will be the unit matrix; otherwise, a unit matrix
with appended rows or columns of zeros.

Reference implementation:
INTEGER(I4B) :: i,n
n=min(size(mat,1),size(mat,2))
mat(:,:)=0.0
do i=1,n

mat(i,i)=1.0
end do

� � �

upper triangle (returns an upper triangular mask)

User interface (or, “USE nrutil”):
FUNCTION upper_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
END FUNCTION upper_triangle

Action:
When the optionalargumentextra is zero or absent, returns a logical mask of
shape(j, k) whose values are true above and to the right of the diagonal, false
elsewhere (including on the diagonal). Whenextra is present and positive,
a corresponding number of additional (sub-)diagonals are returned as true.
(extra = 1 makes the main diagonal return true.) Whenextra is present
and negative, it suppresses a corresponding number of superdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
upper_triangle(jj,kk)= (jj-kk < n)

end do
end do

� � �



23.8 Other Routine(s) 1007

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

lower triangle (returns a lower triangular mask)

User interface (or, “USE nrutil”):
FUNCTION lower_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
END FUNCTION lower_triangle

Action:
When the optional argumentextra is zero or absent, returns a logical mask
of shape(j, k) whose values are true below and to the left of the diagonal,
false elsewhere (including on the diagonal). Whenextra is present and
positive, a corresponding number of additional (super-)diagonals are returned
as true. (extra = 1 makes the main diagonal return true.) Whenextra is
present and negative, it suppresses a corresponding number of subdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
lower_triangle(jj,kk)= (kk-jj < n)

end do
end do

Fortran 95’sforall construction will make the parallel implementation of
all our skew operations utilities extremely simple. For example, the do-loop in
diagadd will collapse to

forall (j=1:n) mat(j,j)=mat(j,j)+diag(j)

In fact, this implementation is so simple as to raise the question of whether a separate
utility like diagaddwill be needed at all. There are valid arguments on both sides of
this question: The “con” argument, against a routine likediagadd, is that it is just
another reserved name that you have to remember (if you want to use it). The “pro”
argument is that a separate routine avoids the “index pollution” (the opposite disease
from “index loss” discussed in§22.1) of introducinga superfluous variablej, and that
a separate utility allows for additional error checking on the sizes and compatibility
of its arguments. We expect that different programmers will have differing tastes.

The argument for keeping a routine likeupper triangleorlower triangle,
once Fortran 95’smaskedforall constructions become available, is less persuasive.
We recommend that you consider these two routines as placeholders for “remember
to recode this in Fortran 95, someday.”

23.8 Other Routine(s)

You might argue that we don’t really need a routine for the idiom

sqrt(dot product(v,v))



1008 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

You might be right. The ability to overload the complex case, with its additional
complex conjugate, is an argument in its favor, however.

� � �

vabs (L2 norm of a vector)

User interface (or, “USE nrutil”):
FUNCTION vabs(v)
T, DIMENSION(:), INTENT(IN) :: v
T :: vabs
END FUNCTION vabs

Applicable types and ranks:
T ≡ any real or complex type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns the length of a vectorv inL2 norm, that is, the square root of the sum
of the squares of the components. (For complex types, thedot product

should be between the vector and its complex conjugate.)

Reference implementation:
vabs=sqrt(dot_product(v,v))


